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Abstract

Hiding information in text documents has been a hot topic
recently, with the most typical schemes of utilizing fonts. By
constructing several fonts with similar appearances, informa-
tion can be effectively represented and embedded in docu-
ments. However, due to the unstructured characteristic, font
vectors are more difficult to synthesize than font images. Ex-
isting methods mainly use handcrafted features to design the
fonts manually, which is time-consuming and labor-intensive.
Moreover, due to the diversity of fonts, handcrafted features
are not generalizable to different fonts. Besides, in practice,
since documents might be distorted through transmission, en-
suring extractability under distortions is also an important
requirement. Therefore, three requirements are imposed on
vector font generation in this domain: automaticity, general-
izability, and robustness. However, none of the existing meth-
ods can satisfy these requirements well and simultaneously.
To satisfy the above requirements, we propose AutoStega-
Font, an automatic vector font synthesis scheme for hiding
information in documents. Specifically, we design a two-
stage and dual-modality learning framework. In the first
stage, we jointly train an encoder and a decoder to invisibly
encode the font images with different information. To ensure
robustness, we target designing a noise layer to work with
the encoder and decoder during training. In the second stage,
we employ a differentiable rasterizer to establish a connec-
tion between the image and the vector modality. Then, we
design an optimization algorithm to convey the information
from the encoded image to the corresponding vector. Thus
the encoded font vectors can be automatically generated. Ex-
tensive experiments demonstrate the superior performance of
our scheme in automatically synthesizing vector fonts for hid-
ing information in documents, with robustness to distortions
caused by low-resolution screenshots, printing, and photog-
raphy. Besides, the proposed framework has better generaliz-
ability to fonts with diverse styles and languages.

Introduction
Text documents are one of the most widely-used media in
our daily lives, and we can access useful information ef-
fectively by reading them. Meanwhile, it is still interest-
ing to hide more information in text documents, which can
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achieve massive practical commercial applications. For ex-
ample, embedding unique hyperlinks in documents can push
abundant information to readers through cellphone scan-
ning; embedding invisible watermarks can help protect the
copyright of documents; embedding identification informa-
tion such as employee IDs can help government agencies,
the military, or companies trace the source of confidential
documents after being leaked. All these applications have
attracted increasing interest in both industry and academic
fields (Xiao, Zhang, and Zheng 2018; Qi et al. 2019).

Due to the redundancy characteristics, information hiding
in natural images has been well-studied (Baluja 2017; Zhu
et al. 2018; Wengrowski and Dana 2019; Tancik, Mildenhall,
and Ng 2020) and is mainly based on pixel-wise modifica-
tions. However, compared with natural images, document
images only consist of simple text structures and smooth
backgrounds, lacking complex textures and colors, which
makes it more challenging to invisibly embed information.

Considering this, a few recently-reported studies exploit
the characteristics of document files rather than document
images to hide information, by modifying glyphs (i.e., the
particular shape designs) of the font used. Specifically, Xiao
et al. (Xiao, Zhang, and Zheng 2018) propose FontCode.
They gather human volunteers to initialize the candidates of
slightly perturbed glyphs from a font manifold (Campbell
and Kautz 2014), which are further filtered to construct a
font codebook. The information can be embedded by replac-
ing the original glyphs with similar glyphs from the code-
book. To extract the information, they train one classifier
for each glyph, which means 52 classifiers are needed for
the English alphabet. However, the process of constructing
a codebook is labor-intensive and time-consuming. Mean-
while, the extraction strategy is only suitable for alphabetic
languages such as English and cannot be extended to ideo-
graphic languages with a wide range of glyphs like Chinese.
Besides, this method can only correctly extract information
from high-resolution documents without much distortion.

Similarly, Qi et al. (Qi et al. 2019) propose to manually
modify the strokes of Chinese glyphs to obtain deformations
of glyphs to construct the font codebook. On the extraction
side, a template-matching method (Yoo and Han 2009) is
used to match the deformations. They share the same limita-
tions with FontCode, namely, the expensive cost to manually
construct the font codebook, weak generalizability to fonts
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in different languages, and limited robustness to distortions.
To satisfy the requirements for automaticity, generaliz-

ability, and robustness simultaneously, we propose AutoSte-
gaFont, a two-stage and dual-modality learning framework
to automatically synthesize vector fonts for hiding informa-
tion in documents. Unlike the methods based on handcrafted
features, we explore neural networks to modify glyph vec-
tors automatically. As Figure 1 shows, in the first stage, we
jointly train an encoder and a decoder to synthesize glyph
images encoded with a specific message. Fed with the mes-
sage and glyph image, the encoder produces an encoded
glyph image, from which the decoder can extract the mes-
sage. To guarantee robustness against distortions from low-
resolution screenshots, printing, and photography, an elabo-
rately designed noise layer is introduced in the training.

Since our goal is to synthesize the encoded font vectors,
in the second stage, we employ a differentiable rasterizer
to establish a connection between the image modality and
the vector modality for conveying the information carried
on a glyph image to its corresponding glyph vector. Specif-
ically, we set the coordinates in the drawing commands of
the original glyph vector as optimizable parameters and iter-
atively update them to minimize the difference between the
rendered image and the image generated by the well-trained
encoder. Meanwhile, during the optimization, we require
the decoder can still correctly extract information from the
rendered image. After the automatic optimization process,
the encoded vectors are synthesized. Experimental results
demonstrate that our framework can be used to automati-
cally synthesize font vectors in different styles or languages.
Besides, the information embedded in documents with the
synthesized fonts can still be extracted after being distorted
by low-resolution screenshots, printing, and photography.

In summary, our contributions are three-fold:
• For the first time, we propose a two-stage and dual-

modality learning framework to automatically synthesize
font vectors that can be used to hide information in doc-
uments. By first generating encoded glyph images and
then conveying the information carried on the images to
the corresponding vectors, a high-quality vector font en-
coded with specific information can be synthesized.

• We targetively design a noise layer to work with the en-
coder and decoder during training. It not only ensures
robustness against distortions in common document us-
age scenarios but also facilitates the modifications on the
image modality to be mapped to the vector modality.

• Extensive experiments demonstrate that our framework
can be used to automatically synthesize vector fonts in
different languages and that the information embedded
in documents using them can be extracted robustly un-
der low-resolution screenshots, printing, and photogra-
phy. Furthermore, we discuss how the encoder trained
with the noise layer learns to embed information by mod-
ifying glyph outlines.

Related Work
DNN-based Information Hiding in Images. In recent
years, many works that aim to hide information in images

have been developed, such as HiDDeN (Zhu et al. 2018)
and StegaStamp (Tancik, Mildenhall, and Ng 2020). Specifi-
cally, HiDDeN proposed an autoencoder-like architecture to
jointly train an encoder and a decoder for information em-
bedding and extraction. Based on this, StegaStamp further
enhanced robustness to distortions resulting from real-world
printing and photography. Nevertheless their effectiveness
in natural images, it is non-trivial to directly extend these
methods to text documents, which mainly consist of ed-
itable discrete characters and simple backgrounds. Even if
we regard text documents as document images, these meth-
ods will also induce perceptible distortions that affect visual
quality. To address it intrinsically, we suggest hiding infor-
mation in fonts rather than document images.

Information Hiding in Text Documents. Hiding infor-
mation in documents is more challenging than images. Ear-
lier approaches focused on slightly adjusting the format of
electronic documents to embed information, such as word
and line spacing (Brassil, Low, and Maxemchuk 1999;
Rizzo, Bertini, and Montesi 2016), which are fragile to real-
world distortions. To remedy it, some studies (Ueoka, Mu-
rawaki, and Kurohashi 2021; Abdelnabi and Fritz 2021;
Yang et al. 2022) tried to make semantic modifications, but
there is no guarantee that the semantics of the modified text
remain exactly the same as the original. Recently, FontCode
(Xiao, Zhang, and Zheng 2018) was proposed to embed in-
formation by perturbing glyphs in English documents. In de-
tail, they first gathered human volunteers to initialize the per-
turbed glyphs and form a font codebook. Then, for each let-
ter, a corresponding classification network was trained for
information extraction. Similarly, Qi et al. (Qi et al. 2019)
proposed to create perturbed glyphs by moving strokes and
adopt a template-matching algorithm to extract the informa-
tion by calculating the similarity of the current glyph to the
perturbed glyphs. These methods are not flexible in practice
due to three limitations: (1) They rely heavily on human in-
volvement to design the fonts, which is time-consuming and
labor-intensive. (2) These methods are not generally appli-
cable for different fonts. (3) They are only feasible in some
limited scenarios such as documents with large font sizes.
The subsequent experiments demonstrate that our AutoSte-
gaFont can effectively overcome all above limitations.

Font Generation. In the last decade, deep learning has
achieved unprecedented success in font image generation
(Gao et al. 2019; Wang, Gao, and Lian 2020). However, it is
still under-explored to generate font vectors. Despite the at-
tempts of a few approaches (Carlier et al. 2020; Lopes et al.
2019), their performance is still far from satisfactory. Re-
cently, Wang et al. (Wang and Lian 2021) first propose a
novel method that can synthesize high-quality font vectors,
in which they leverage a differentiable rasterizer to refine the
visual quality of the generated vectors. Motivated by this, we
introduce the rasterizer to transfer the information carried on
encoded glyph images to the corresponding glyph vectors.

Method
In this section, we first elaborate the proposed two-stage and
dual-modality learning framework to automatically synthe-
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Figure 1: An overview of our two-stage and dual-modality framework. Stage I: we jointly train the encoder and decoder along
with a noise layer. Stage II: we build the connection between the image modality and the vector modality. Briefly, we iteratively
optimize the drawing commands of an input vector until its rendered image is indistinguishable from the corresponding encoded
image and is encoded with the same message. We use absolute coordinates for each command, and ‘M’, ‘L’, and ‘C’ in front of
the coordinates denote the move, line, and curve commands, respectively.

size vector fonts for hiding information in documents. After
that, we describe how to use the synthesized fonts to embed
and extract information in documents.

Framework Overview

Here, we briefly describe the pipeline of our AutoStega-
Font framework. As shown in Figure 1, in the first stage,
we train the encoder-decoder network for encoding and re-
covering information in glyph images along with a noise
layer simulating the distortions in document usage scenar-
ios. After training, we use the well-trained encoder to mod-
ify each glyph of a given font so that each glyph is encoded
with a one-bit message. The message carried by the encoded
images can still be recovered by the decoder after passing
through the noise layer. In the second stage, we set the co-
ordinates of the drawing commands of the original glyph
vector as to-be-optimized parameters and employ a differ-
entiable rasterizer to render the glyph vector to the glyph
image. During the optimization process, we shall guarantee
pixel-level consistency between the rendered image and the
encoded image. In addition, the decoder shall extract the cor-
rect message from the rendered image. Finally, we can ob-
tain the encoded vectors, based on which we can construct
computer-usable font files (e.g., TTF files) to hide informa-
tion in document files.

Stage I: Image-based Encoder-Decoder Training
Our glyph image synthesis system mainly comprises three
components: an encoder E, a noise layer N , and a decoder
D. The inputs of the encoder E include a grayscale original
glyph image Iori of shape 64 × 64 and a one-bit message
M ∈ {0, 1}. The output of E is an encoded image Ien of
the same shape as Iori. Then, Ien is distorted by the noise
layer N to produce a noised image Ino. The decoder D tries
to extract the corresponding one-bit message Mout from Ino.

Encoder. The encoder is trained to encode a one-bit mes-
sage on each glyph image while minimizing perceptual dif-
ferences between the input and the encoded glyph images. It
first applies convolutions with residual blocks to form an in-
termediate representation. Then the one-bit message is repli-
cated to the same shape as Iori and concatenated with the in-
termediate representation. After several subsequent convolu-
tions, the encoder produces Ien. To guarantee visual quality,
we introduce the basic loss Lvq , which calculates the mean
squared error (MSE) between Iori and Ien, i.e.,

Lvq = MSE(Iori, Ien). (1)

For preserving feature-wise details of the glyph images,
the perceptual loss (Johnson, Alahi, and Fei-Fei 2016) is
adopted by calculating the feature distance in different lay-
ers of the VGG network (Simonyan and Zisserman 2014),
which is represented as Lpercep(Iori, Ien). Besides, we in-
troduce the adversarial loss LA to further enhance the visual
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quality of Ien, which tries to make the additional adversarial
discriminator A cannot distinguish Ien from Iori, i.e.,

LA = log(1−A(Ien)). (2)

Meanwhile, for the discriminator, the loss function is

Ldisc = log(A(Ien)) + log(1−A(Iori)). (3)

Noise Layer. During training, we apply a series of differ-
entiable perturbations to approximate the distortions caused
by physically displaying and imaging the documents be-
tween the encoder and the decoder. Based on the previ-
ous work (Tancik, Mildenhall, and Ng 2020), we design the
noise layer suitable for document usage scenarios, including
resizing, translation, scaling, rotation, perspective transfor-
mation, blurring, Gaussian noise, and color manipulation.
The encoded glyph image Ien will go through this noise
layer before being fed into the decoder. It is worth men-
tioning that, our noise layer can drive the encoder to mod-
ify the glyph outline, which not only ensures robustness to
the above distortions but also facilitates the mapping of the
modifications on the image modality to the vector modality.

Decoder. The decoder is trained to recover a one-bit mes-
sage from a noised glyph image Ino. Since each glyph image
is encoded with one bit message, the decoder is equivalent to
a binary classifier, whose output Mout means the probability
of bit ‘0’ or ‘1’. Therefore, we use the cross-entropy loss to
minimize the message extraction loss Lm, i.e.,

Lm = −M · log(Mout)− (1−M) · log(1−Mout). (4)

Training. In Stage I, we jointly train the encoder and the
decoder, and the whole training loss can be formulated as
follows:

L1 = λvqLvq + λpLpercep + λALA + λmLm, (5)

which is the weighted sum of the loss terms.

Stage II: Optimization-based Vector Encoding

The goal in the second stage is to convey the information
from an encoded glyph image to its corresponding vector.
To achieve this, we employ a precise differentiable raster-
izer R that can render the drawing commands (consisting of
coordinate types and coordinate values) of an input glyph
vector to a glyph image of the specified size. Besides, we
also leverage the noise layer N , the well-trained encoder E,
and the decoder D in Stage I, for the forward and optimiza-
tion process in Stage II.

Forward. The input of the rasterizer is the drawing com-
mands of the original glyph vector. We use C to represent the
coordinates in the commands. The rasterizer outputs the ren-
dered image Irend of the drawing commands. Then, Irend is
distorted by the noise layer N to produce a noised rendered
image I ′no, from which the well-trained decoder D tries to
extract the one-bit message M ′.

Algorithm 1: Optimization-based encoding. The encoder E
and decoder D are pre-trained in Stage I. We set the number
of iteration k = 200, and the optimization step length l = 1.
The loss functions are demonstrated in Eq.(6) to Eq.(8).
Input: The original font image Iori, the coordinate values in the

drawing commands of the original font vector C, the one-bit
message M .

Output: The coordinate values in the drawing commands of the
encoded font vector Cen.

1: Ien = E(Iori,M);
2: // Generate encoded font image Ien using the encoder E

trained in the first stage.
3: Cen = C;
4: for k iterations do
5: Irend = Rastrizer(Cen);
6: M ′ = D(Irend);
7: L2 = λimgLimg(Ien, Irend) + λmsgLmsg(M,M ′);
8: Cen = Cen − l · ∇CenL2;
9: end for

10: return Cen

Optimization. We set the coordinates C as to-be-
optimized parameters and iteratively update C through the
standard back-propagation until its rendered image Irend
carries the same message as the encoded image Ien. Then,
the encoded commands Cen can be used to directly build the
vector format encoded glyph. To achieve this goal, we need
to make Irend as consistent as possible with Ien, which can
transfer the invisible and robust modifications on Ien to the
drawing commands of the glyph vector. For this, we intro-
duce loss Limg to constrain the pixel-level consistency, i.e.,

Limg = MSE(Ien, Irend). (6)
Besides, to further ensure that the rendered image carries the
one-bit message, we append the message extraction loss :

Lmsg = −M · log(M ′)− (1−M) · log(1−M ′)

= −M · log(D(Irend))− (1−M) · log(1−D(Irend)).
(7)

The optimization objective function in Stage II is repre-
sented as follows:

L2 = λimgLimg + λmsgLmsg, (8)

where λimg and λmsg are used to balance the two terms.
After optimization, we can obtain the final optimal vector
commands Cen, i.e.,

Cen = argmin
C∈C

L2(C; Ien,M), (9)

where C denotes the selection of all possible coordinate val-
ues. The detailed process is provided in Algorithm 1.

Message Embedding and Extraction in Documents
After performing the above two-stage procedure for all
glyphs in a given font F , we obtain two encoded fonts,
namely, F0 carrying bit 0 and F1 carrying bit 1, both of
which are visually indistinguishable from F . Here, we il-
lustrate in detail how to use these fonts to embed and extract
a multi-bit message in a document, as shown in Figure 2.
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Figure 2: The font-based message embedding and image-based message extraction process. We synthesize two fonts using the
AutoStagaFont framework, where all glyphs in one font are encoded with bit 0 and all glyphs in the other are encoded with bit
1. Then, we embed a multi-bit message in the given document (a PDF or DOC file) using these fonts (TTF files). To extract the
message, we segment the document image into individual glyph images and extract the bitwise information in order.

Embedding. Given an original document (e.g., a PDF or
DOC file) as input, we first read the text content from it. Tak-
ing English as an example, the text content mainly consists
of letters. To embed a one-bit message in a letter, we re-
place the original letter with the corresponding letter in the
encoded font file selected according to the one-bit message.
For example, if we want to embed bit 0 in the current let-
ter ‘A’, we replace it with the corresponding ‘A’ in F0, and
conversely, if we want to embed bit 1, we replace it with
the ‘A’ in F1. As each letter can carry one bit of message,
we can embed a multi-bit message (e.g., watermarks, hyper-
links, employee IDs) in a document with a series of letters.

Extraction. To extract the multi-bit message from a doc-
ument image, we first use the character region-aware text
detector, CRAFT (Baek et al. 2019), to segment each glyph
in the document image individually. Then, each individual
glyph image will be sent into the decoder trained in the first
stage to produce a one-bit message, so that the multi-bit mes-
sage can be finally extracted. More importantly, since the de-
coder is trained for all glyphs in a given font, we do not need
to recognize the semantic information of each glyph before
extracting the message, which greatly improves efficiency.

Experimental Results
Experiment Settings
Dataset. We select Times New Roman and Helvetica as
representatives of serif and sans-serif English fonts, respec-
tively. Besides, to verify the generalizability of our frame-
work in different languages, we also conduct experiments
on Song, which is the most commonly used Chinese font.
We use the open source font editor FontForge1 to obtain ren-
dered glyph images and corresponding SVG commands.

Implementation Details. We utilize Adam (Kingma and
Ba 2014) as the optimizer of our models. To obtain bet-
ter optimization results in the second stage, we adopt the
glyph image super-resolution model released by (Wang and
Lian 2021) to increase the resolution of the initial encoded

1https://fontforge.org/

glyph images from 64× 64 to 256× 256. We adopt the dif-
ferentiable rasterizer provided by (Li et al. 2020). For the
weight factors in the first stage, we set λvq = 5, λpercep =
0.01, λm = λA = 1. In the second stage, we set λimg = 1
and λmsg = 10−5. The number of iterations k is set to 200.

Baseline. There are currently two methods suitable for
comparison, i.e., the template-based method (Qi et al. 2019)
and the manifold-based method FontCode (Xiao, Zhang, and
Zheng 2018). We reproduce Qi’s method as the baseline. For
a fair comparison, the amount of modifications on glyphs is
guaranteed to be the same as our method. For FontCode,
the experimental process is difficult to reproduce because it
requires a large number of volunteers to participate in de-
signing the font codebook, and there is no publicly available
code. Therefore, we align the experimental settings provided
in their paper and use the released results for comparison.

Metrics. The peak signal-to-noise ratio (PSNR) and struc-
tural similarity (SSIM) are used to evaluate the visual quality
of the encoded glyph images. To evaluate robustness under
different distortions, we adopt the average extraction accu-
racy (ACC), i.e., the percentage of bits correctly extracted.

Experimental Results
Visual Quality. In Figure 3, we showcase our synthesized
fonts corresponding to Times New Roman and Song, respec-
tively. The AutoStegaFonts can guarantee high visual quality
in all cases. We also provide the quantitative results in Table
1, which further demonstrate that the encoded glyph images
are hard to be distinguished from the original ones.

Font Times Helvetica Song

PSNR ↑ 35.52 33.53 35.93
SSIM ↑ 0.9962 0.9948 0.9977

Table 1: Quantitative evaluation on the visual quality.
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Figure 3: Examples of the synthesized vector format AutoStegaFonts for Times New Roman (English) and Song (Chinese),
where glyphs in the first line come from the original font, each glyph in the second line is encoded with bit 0, and each glyph
in the third line is encoded with bit 1.

Font Method 16 px 20 px 24 px 32 px 40 px

Times Ours 86.93 98.56 99.52 100 100
Baseline 51.92 61.53 65.38 67.31 71.15

Helvetica Ours 93.46 99.13 99.62 99.90 100
Baseline 59.62 63.08 67.50 70.96 75

Song Ours 83.44 92.88 95.77 96.54 97.60
Baseline 50.19 53.85 57.69 65.38 68.65

Table 2: Robustness (ACC (%)) against screenshots with
three different fonts under different resolutions (i.e., font
sizes).

Robustness against Screenshots. Documents are often
propagated via screenshots, where the distortions mainly
come from the down-sampling of the screen. We first
print all the encoded glyphs (repeated 10 times) in a PDF
file and take screenshots at different resolutions (i.e., font
sizes). Then, we calculate the average extraction accuracy
(ACC) on the extracted information. As shown in Table
2, we achieve better robustness on English fonts than Chi-
nese fonts. Nevertheless, in most cases, we obtain above
90% successful extraction, which outperforms the baseline
method by a large margin. Even at font size of 16px, an
ACC largger than 80% is still guaranteed. This means that,
even at very low resolutions, we can still achieve correct ex-
traction by using error-correcting codes like BCH codes.

Robustness against Print-Camera Shooting. A more
common scenario is using a cellphone camera to capture
printed paper documents to extract information. Therefore,
we print all the encoded glyphs (repeated 10 times) on A4
papers at different font sizes and calculate the average ex-
traction accuracy (ACC) after taking photos at a distance of
30 cm with a handheld cellphone. As Table 3 shows, we can
still achieve above 90% extraction accuracy when the font
size is larger than 20px. As mentioned above, to compare
with FontCode, we align the experimental settings provided

Font Method 16 px 20 px 24 px 32 px 40 px

Times
Ours 82.24 89.90 91.54 95.69 96.35
Baseline 53.85 55.77 61.54 63.46 69.23
FontCode - - - - 40

Helvetica Ours 88.64 94.17 96.25 97.79 97.88
Baseline 60.96 62.12 66.92 69.04 72.88

Song Ours 79.84 88.92 90.76 92.11 95.77
Baseline 55.76 63.46 65.38 67.50 67.69

Table 3: Robustness (ACC (%)) against print-camera shoot-
ing with three different fonts under different resolutions.

Font Method 16 px 20 px 24 px 32 px 40 px

Times Ours 68.19 79.43 86.92 95.67 96.44
Baseline 55 57.12 61.15 65.77 69.42

Helvetica Ours 71.27 77.98 81.25 93.90 95.47
Baseline 55.76 57.69 59.81 62.69 67.12

Song Ours 81.92 87.40 89.10 93.27 93.67
Baseline 52.12 64.04 65.58 65.96 68.08

Table 4: Robustness (ACC (%)) against screen-camera
shooting with three different fonts under different resolu-
tions.

in their paper and directly use the released results therein.
Since FontCode is designed only for high-resolution scenar-
ios such as posters, the embedded information cannot be ex-
tracted at regular font sizes.

Robustness against Screen-Camera Shooting. We also
demonstrate robustness against the screen-camera shoot-
ing distortions, which are mainly caused by screen down-
sampling, light sources, moiré patterns, etc. As shown in Ta-
ble 4, compared with the baseline, our method is more robust
against the combined distortion. When the font size is small,
Chinese glyphs perform better than English, which we at-
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Display Angles Distances

-60◦ -30◦ 0◦ +30◦ +60◦ 20 cm 30 cm 40 cm 50 cm 60 cm

Screen 89.68 93.27 94.23 93.99 90.17 75.38 95.45 90.59 93.03 94.48
Paper 94.31 94.02 96.20 93.96 93.41 96.70 94.23 94.62 92.85 92.03

Table 5: The average extraction accuracy (ACC (%)) on different shooting angles and distances.

Font 16 px 20 px 24 px 32 px 40 px

Times 83.76 92.96 99.21 99.97 99.98

Table 6: The extraction accuracy of our method on natural
text in different resolutions. we use the text content from
The Lord of The Rings, Chapter 1 for the evaluation.

tribute to their complex structures, while English glyphs
with simpler structures are susceptible to moiré patterns.

Impact of Camera Shooting Angles and Distances. In
the former experiments, we fix the camera shooting angle
(0◦) and distance (30 cm), to evaluate the robustness against
print/screen-camera shooting with different fonts under dif-
ferent font sizes. Here, we further conduct controlled exper-
iments to comprehensively evaluate the impact of different
camera shooting angles and distances. Specifically, we fix
the font size as 32px and utilize Times New Roman for eval-
uation. Due to the noise-aware training in the first stage,
we do not need to restore the perspective transformation in-
troduced by the shooting process. Therefore, we first fix the
shooting distance to 30 cm and calculate the ACC in dif-
ferent shooting angles. Then, we fix the shooting angle to
0◦ and calculate the ACC in different shooting distances.
As Table 5 shows, our method performs well under different
shooting angles and different distances in most cases. It is
worth noting that a much closer distance to the screen will
cause severe moiré patterns, inducing a performance degra-
dation.

Performance on Natural Text. We further conduct exper-
iments on natural text, where different glyphs appear with
different frequencies. Similar to FontCode, we adopt the
text content from The Lord of The Rings, Chapter 1 to em-
bed a randomly generated multi-bit message and calculate
the extraction accuracy under screenshots. As shown in Ta-
ble 6, the extraction accuracy on natural text is comparable
with that tested by printing all the encoded glyphs in the
same frequency, whose results are provided in Table 2.

Ablation Study
Importance of the Noise Layer. Here, we compare the
encoded glyph images synthesized by the encoders trained
with and without the noise layer. As shown in Figure 4, the
encoder trained with the noise layer exactly modifies the
glyph outline to hide information. We explain that the mod-
ifications on the glyph outline rather than in pixel values are
more likely to be preserved when they pass through the noise

Figure 4: Glyph images encoded by the encoder trained with
and without noise layer.

Figure 5: Examples of the glyph images synthesized by the
encoder trained with/without perceptual loss.

layer. In contrast, without the noise layer, the encoded infor-
mation even cannot be transferred to the vector in Stage II.
In other words, the noise layer not only ensures robustness
against the distortions but also facilitates the mapping of the
modifications on the image modality to the vector modality,
killing two birds with one stone. We hope this perspective
on the noise layer can be instructive for other tasks.

Importance of Perceptual Loss. Since glyph images are
stylized, only using MSE loss to constrain the pixel-wise im-
age quality may make the encoded glyph images less natu-
ral. Thus, we adopt perceptual loss to guarantee the style-
level consistency between the encoded images and the orig-
inal images. As Figure 5 shows, the encoder trained with
perceptual loss can generate glyph images more naturally.

Conclusion
In this paper, we propose AutoStegaFont, a two-stage and
dual-modality framework to automatically synthesize vec-
tor fonts for hiding information in text documents. Com-
pared with existing methods based on manually designed
fonts, our framework satisfies the requirements (i.e., the au-
tomaticity, generalizability, and robustness) well and simul-
taneously for the first time, making it more practical to hide
information in documents.
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