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Robust Model Watermarking for Image
Processing Networks via Structure Consistency
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Abstract—The intellectual property of deep networks can be easily “stolen” by surrogate model attack. There has been significant
progress in protecting the model IP in classification tasks. However, little attention has been devoted to the protection of image
processing models. By utilizing consistent invisible spatial watermarks, the work [1] first considered model watermarking for deep
image processing networks and demonstrated its efficacy in many downstream tasks. Its success depends on the hypothesis that if a
consistent watermark exists in all prediction outputs, that watermark will be learned into the attacker’s surrogate model. However, when
the attacker uses common data augmentation attacks (e.g., rotate, crop, and resize) during surrogate model training, it will fail because
the underlying watermark consistency is destroyed. To mitigate this issue, we propose a new watermarking methodology, “structure
consistency”, based on which a new deep structure-aligned model watermarking algorithm is designed. Specifically, the embedded
watermarks are designed to be aligned with physically consistent image structures, such as edges or semantic regions. Experiments
demonstrate that our method is more robust than the baseline in resisting data augmentation attacks. Besides that, we test the
generalization ability and robustness of our method to a broader range of adaptive attacks.

Index Terms—Deep Model IP Protection, Model Watermarking, Image Processing
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1 INTRODUCTION

DEEP learning has made tremendous success in many appli-
cation domains, including computer vision [2], [3], natural

language processing [4], and autonomous driving [5], to name a
few. However, it is often not that easy to train a good DNN model
because of the demand for massive training data and computation
resources. Recently, for business consideration, protecting the
intellectual property (IP) of DNN models has attracted much
attention from both academia and industry. However, it is still a
seriously under-explored field because of its inherent challenges.

The challenges indeed come from the powerful learning ca-
pacity of DNN, which is a double-edged sword. On the one hand,
it makes discriminative feature representation learning easy in
different tasks once sufficient high-quality data is granted. On the
other hand, the attacker can use one surrogate model to imitate
one target network’s behavior even if the network structure and
weights are both unknown. For example, with the model API at
the cloud platform, the attacker can first feed a lot of inputs into
the API and obtain their outputs. The attacker then regards such
input-output pairs as training samples and distills a good surrogate
model, similar to the teacher-student learning. This attack is called
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Fig. 1. Left: the working principle of [1], which embeds a unified (consis-
tent) watermark into network outputs to guarantee the assumed water-
mark consistency; Right: its fragility to regular augmentation techniques
like random cropping, which will destroy the watermark consistency.

“surrogate model attack” or “model extraction attack” [6], [7].
In order to protect the model IP, many methods [8], [9] have

been proposed. However, most of them focus on the classification
task and only consider modification-based attacks like “fine-
tuning” and “network pruning”, where the attacker has access
to the victim model, including its parameters and architectures.
Recently, the work [1] began to consider the IP protection problem
for image processing networks and surrogate model attacks. The
motivation of this work is very straightforward. As shown in
the left part of Figure 1, they embed a unified watermark (e.g.,
same embed position, watermark size, etc.) into the target model
output. When the attacker learns a surrogate model by using the
input-output pairs from the target model, the surrogate model will
also learn this unified watermark into its outputs to minimize
the training loss. Considering their watermarks are essentially a
unified watermark image in different embedded outputs, we regard
it as “whole-image consistency”.

Notwithstanding its success, the “whole-image consistency”
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can be easily destroyed by common augmentation techniques such
as random cropping and rotation, which is explained as a big
limitation in its extension work [10]. The reason is illustrated in
the right part of Figure 1. In this augmented case, the surrogate
model cannot find a consistent watermark pattern, thus directly
ignoring it as random noise by considering all the training samples.

To address the above limitation, we propose a new water-
marking methodology in this paper, which is inherently robust to
data augmentation. Rather than pursuing the above whole-image
consistency, we design “structure consistency”, which couples
the watermark patterns with the image structures. It is inspired
by the fact that some global structures such as edges or local
semantic structures such as eyes can keep their physical meaning
after augmentation. If we embed the watermark information into
such structures, the watermark consistency can be naturally pre-
served. Based on this observation, we design a structure-aligned
watermarking scheme, which encodes the watermark information
into constant color values and fills them into the above structure
regions as a special type of watermark.

The overall model watermarking framework is shown in Fig-
ure 3. It basically consists of four modules: a watermark bit
encoder to encode watermark bits into structure-aligned water-
marks, an embedding network that learns to embed structure-
aligned watermarks into the cover images without sacrificing
the original visual quality, an extracting network that tries to
extract hidden watermarks out from watermarked images, and a
final decoder to decode the recovered bits. For the integrity of
forensics, the extracting network will output a blank image for all
unwatermarked images. However, training such a framework to
achieve great performance is not a trivial task, because the hidden
watermark information will be easily destroyed under diverse
augmentations. To overcome this issue, we further design an incre-
mental training strategy, which adds new augmentation operators
or loss constraints gradually. Extensive experiments demonstrate
the superior performance and robustness of our method. Our
contributions are four-fold:

• We provide detailed analysis regarding the fragility of the wa-
termarking scheme proposed in [1], [10], and explain why the
whole-image consistency is not robust to data augmentation.

• We propose a new methodology called “structure consis-
tency”, based on which a structure-aligned model watermark-
ing framework is designed.

• To circumvent the learning difficulty, an incremental training
strategy is designed by gradually involving new augmentation
operators or loss constraints.

• We demonstrate the superior robustness of our method in
different application scenarios and adaptive attacks.

2 RELATED WORK

Model Watermarking. Model watermarking (i.e. DNN water-
marking) is a popular technique for model IP protection. In recent
years, for the classification task, several algorithms [8], [9] have
been proposed. In [8], a special weight regularizer is leveraged
so that the distribution of model weights can be represented as
watermarks. However, it only works in a white-box way, which
needs to know the original network structure and parameters.
To remedy it, some black-box DNN watermarking methods are
proposed, most of which are designed based on backdoor attacks.
For example, Adi et al. [9] uses a particular set of inputs as
the indicators and lets the model deliberately output specific

incorrect labels. Despite their success, most of these methods only
concentrate on simple modification-based attacks like fine-tuning
and model pruning. In [11], [12], [13], [14], [15], [16], some works
started to consider the more challenging surrogate model attack
but still only focus on the classification task.

Recently, the work of [1] starts to consider the watermark-
ing problem for image processing networks and innovatively
leveraged spatial invisible watermarking algorithms for model
watermarking against surrogate model attack. However, as pointed
out in their extension work [10], it will totally fail when the
attacker utilizes some data augmentation during the surrogate
model’s training, as the underlying working principle relies on
the whole-image watermark consistency. Concurrently, Wu et al.
[17] also try to protect the IP of image processing network, but
without considering the surrogate model attack. Besides, Wu’s
method is also very similar to the case called as “self-watermarked
models” in the work of [10]. Therefore, we regard the work of [1]
as the baseline for comparison, and our method is motivated by
the baseline, but designs the new structure consistency to obtain
augmentation robustness.

Data Augmentation. Data augmentation plays a crucial role in
learning better and generalized deep neural networks. Basic data
augmentation techniques include rotation, flipping, cropping, and
adding noises. Depending on whether they affect the original im-
age quality, we divide them into two categories: quality-harmless
and quality-harmful. For deep image processing tasks, since the
attacker wants the surrogate model to get high-quality output, we
mainly consider the common quality-harmless data augmentation
techniques such as flipping, rotation, cropping, and resizing. Be-
sides, we also consider 6 quality-harmful augmentations (namely,
noise, blur, hue, saturation, contrast and style transfer) as an
ablation study to test the robustness.

Image-to-Image Translation. Image-to-image translation is a
typical image processing task of which the input and output are
both images. It is widely adopted in many applications such
as edge to the image synthesis, deraining, and X-ray Chest
image debone. In recent years, Generative Adversarial Network
(GAN) [3] has brought significant progress to image-to-image
translation. Generally, there are three typical settings: paired [18],
[19], unpaired [20], and semi-paired [21]. Similar as [1], [10],
because paired data is more difficult and expensive to collect and
many high-quality deep processing models are also trained in a
supervised way, we mainly consider the pairwise translation as
the example applications.

3 PRE-ANALYSIS AND MOTIVATION

Recap of the “whole-image consistency”. Given an input do-
main A = {a1, a2, ..., an} and a target output domain B =
{b1, b2, ..., bn}, pairwised deep image processing is to learn a
good target model M so that M(ai) can approach bi under some
pre-defined distance metric L:

L(M(ai), bi) → 0. (1)

For surrogate model attack, it means that given a target M, the
attacker does not know its detailed network structure and weights
but can access M to get a lot of input-output pairs. Because
attacker may use an input set different from that used by M, we
denote the generated input-output pairs as {a′1, a′2, ..., a′m} and
{b′1, b′2, ..., b′m} respectively. Then the attacker will use such pairs
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Fig. 2. Two repetitive watermark patterns tried to preserve the whole-
image consistency in the baseline method. But still no watermark can
be extracted from the surrogate model’s outputs.

to train a surrogate model SM. The working principle of [1], [10]
is based on the hypothesis that if SM can learn a good mapping
between {a′1, a′2, ..., a′m} and {b′1, b′2, ..., b′m}, then if a unified
watermark δ is added to all the output b′i, SM will also absorb δ
into its output, which can be extracted out for forensics. This is
based on the fact that:

L(SM(a′i), b
′
i) → 0 ⇔ L(SM′(a′i), b

′
i + δ) → 0

when SM′ = SM+ δ.
(2)

Because of the fitting and loss minimization property of deep
networks, SM can be easily learned to be SM′ by adding a skip
connection δ. Since δ is a unified watermark image embedded in
different outputs, we call it “whole-image consistency”.

Fragility to Data Augmentation. Despite the effectiveness, it
has a serious limitation as admitted in [10], i.e. , the above
“whole-image consistency” is not robust to data augmentation
techniques, which are commonly used in training DNNs. Because
data augmentation will destroy the underlying watermark consis-
tency, which is the basis of [1], [10]. To preserve the consistency,
one intuitive way is to use repetitive watermark patterns as shown
in Figure 2, and train the framework with different augmentation
operators. However, we find it still does not work. Briefly, no
watermark pattern can be extracted from the surrogate model’s
outputs, and the successful extracting rate (SR) is 0% in all cases.
Because even though the watermark pattern is repetitive, it will

still change during the augmentation process, e.g. position shift
during cropping and orientation change during rotation.

In fact, we find that the whole-image consistency is in-
deed methodologically difficult to hold under data augmenta-
tion. Specifically, denote the data augmentation operation of
each {a′i, b′i + δ} as Ti, the surrogate model SM trained
with augmentation is to learn the mapping between the do-
main {T1(a

′
1), T2(a

′
2), ..., Tm(a′m)} and {T1(b

′
1 + δ), T2(b

′
2 +

δ), ..., Tm(b′m+δ)}. Let us simplify the explanation by assuming
Ti to be a linear operation, i.e. , Tm(b′m+δ) = Tm(b′m)+Tm(δ).
For pair-wised image processing, since there exists underlying
content relationship between a′i and b′i, if the same constant T0

(Ti = T0) is applied to all the (a′i, b
′
i), once the target model M

can learn such a mapping relationship, it should be feasible for
SM. However, if different Ti is used for different i, and δ is not
content-related to a′i or b′i, then Ti(δ) will lose its consistency
across different i and is not related to a′i, b

′
i either. In this case,

SM is impossible to learn δ into its output anymore. This is
because, without the consistency constraint or content relationship,
given Ti(ai), there is no information available for SM to predict
what Ti(δ) looks like, thus SM directly regards it as independent
noise and ignore it by considering the whole training set.

Structure Consistency. As analyzed above, if we want SM to
absorb the watermark δ, δ must be able to keep its consistency
under data augmentation. A trivial solution is to let δ be a

pure-color image with constant pixel values. However, such a
pure-color watermark image is unfriendly to the convolutional
watermark extracting network. Because if the extracting network
needs to extract such a constant δ out for different watermarked
images, the convolutional weights will be learned to all zeros
while only bias term being non-zeros. In this way, even given
an unwatermarked image, it will also output δ too, which loses the
forensics meaning. Therefore, we resort to a more advanced way:
making the watermark pattern consistent with image structures.

It is inspired by the observation that some global structures
like edges or some local semantic structures like “eyes” of the
face are content-related and can keep their physical meaning
under the common data augmentation techniques, we call this type
of consistency “structure consistency”. By further encoding the
watermark information into specific color values and filling them
into these consistent structures, we can generate structure-aligned
watermark δi for each a′i, b

′
i. During the augmentation Ti, δi will

adaptively change along with a′i, b
′
i and keep its alignment with

structures of a′i, b
′
i. Therefore, it is still possible for SM to absorb

δi based on such structure consistency.

4 STRUCTURE-ALIGNED MODEL WATERMARKING

Overview. Based on the above structure consistency analysis, we
propose the structure-aligned model watermarking algorithm in
Figure 3. The basic goal is to learn a good embedding network
HNet and a corresponding extracting network EXNet . HNet is
responsible to embed the structure-aligned watermarks into the
cover images to generate watermarked images while EXNet is
responsible to extract the embedded watermarks out. To make
HNet and EXNet robust to different augmentation operations, an
augmentation layer is inserted between them and jointly trained.
After the training, given a target model to protect, we feed its
output to HNet before exposing it to the public. In such a way,
the outputs obtained by the attackers are watermarked. And if one
surrogate model is trained with such input and watermarked output
pairs, EXNet can still extract the target watermarks from the
surrogate model’s outputs for forensics. Besides, one bit encoder
and decoder are leveraged to encode/decode the watermark bits
respectively. Below we will elaborate on each part in detail. For
ease of presentation, we will use bi below as the substitute for b′i.

Watermark Bit Encoder and Structure Extractor. We pro-
pose to fill constant RGB values into these structures to ensure
consistency in the physical structures during the augmentation
process. Taking the common 8-bit color space as an example, the
value range of each color channel (“Red”, “Blue,” and “Green”)
would be [0, 255]. Assuming the color step used for encoding
is t, then the total number of possible pixel values n equals
255
t · 255

t · 255
t (255 left as unwatermarked indicator). Therefore,

the max watermark bit sequence length is ⌊log2(n)⌋. In real
applications, the watermark bit sequence S represents the IP
information we want to embed, such as company name, model
ID, and version.

Given the S , we can use some simple mathematical encoding
schemes (eg., hash functions) to map S into one specific color
value Ci. The detailed physical structure format may be different
depending on the specific task. For example, we can use the global
edges for general natural images and local semantic regions like
“eyes” or “noses” for face images. In the following experiments,
we will try three different types of physical structures to demon-
strate the generality of our method. By default, we use the well-
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Fig. 3. The proposed structure-aligned model watermarking framework, which consists of four modules: watermark bit encoder and decoder, one
embedding network HNet and an extracting network EXNet , where the augmentation layer is inserted between HNet and EXNet . For better
performance, a discriminator network D is also appended.

known Sobel edge algorithm to extract the global edges as the
physical structure.

Structure-aligned Model Watermarking. After getting the en-
coded color Ci and structure map Mi, we fill Mi with Ci to
produce a structure-aligned watermark Wi:

Wi = Ci ⊗Mi. (3)

Here, ⊗ means filling Ci into the regions of Mi whose mask
values are 1 and filling a blank color (R:255,G:255,B:255) other-
wise. As we want HNet be capable of handling different Ci rather
than use an independent HNet for each possible Ci, we randomly
sample different Ci during training.

After obtaining Wi, we concatenate it with the original cover
image bi along the channel dimension and feed them into HNet
to get the watermarked image bwi . To ensure the robustness to dif-
ferent augmentation operators {T1, ..., Tk}, bwi will be randomly
processed by one or multiple augmentation operators before being
fed into the extracting network EXNet . Then, we will recover the
hidden color values from the extracted watermark W ′

i by using
the physical structure of the watermarked image as the position
guidance. Finally, the original watermark bit sequence will be
decoded from the recovered color values.

Network Structures. For fair comparison, we follow [1] and
adopt the UNet [22] as our HNet . It is an auto-encoder like
network structure and adds multiple skip connections between the
encoder and decoder part, which is a widely used design in many
image translation tasks. For the extracting network EXNet , we
also adopt an auto-encoder like network structure. Specifically,
three convolutional layers are used as the encoder and one decon-
volutional layer along with two convolutional layers are regarded
as the decoder. Several residual blocks are further inserted between
the encoder and decoder to enhance its learning capacity. To help
achieve better visual quality, we leverage one patch discriminator
network D [18] for adversarial training.

Loss Functions. The training loss consists of two parts: the
embedding loss LH and the extracting loss LEX :

L = LH + λ · LEX , (4)

where λ is the hyper parameter to balance their importance. LH is
to ensure the visual quality of watermarked images while LEX is
to ensure that the hidden watermarks can be successfully extracted
out. Therefore, a too large λ will cause inferior visual quality

but higher extracting success rate, and too small λ will obtain
high visual quality watermarked images but the hidden watermark
would be too weak to be extracted out.

The embedding loss LH has two parts: a simple L2 loss ℓ2
and an adversarial loss ℓadv , i.e.,

LH = λ1 · ℓ2 + λ2 · ℓadv. (5)

The L2 loss ℓ2 measures the pixel-wise difference between the
input cover image bi and the watermarked output image bwi .
That is to say, we want the watermarked images to be visually
similar to the original unwatermarked images so that the attacker
even cannot know whether the output of the target model is
watermarked or not:

ℓ2 = E
bi∈B,bwi ∈Bw

∥bi − bwi ∥2, (6)

here, B and Bw represent the unwatermarked and watermarked
image set respectively. And the adversarial loss ℓadv will encour-
age the embedding network HNet to hide watermarks better so
that the discriminator D cannot distinguish its output from real
unwatermarked images bi,

ℓadv = E
bi∈B

log(D(bi)) + E
bwi ∈Bw

log(1−D(bwi )). (7)

For effective forensics, besides the requirement that EXNet
can extract the hidden watermarks out from the watermarked
images, we also need EXNet not to extract any watermark out
for unwatermarked images. Therefore, the extracting loss consists
of two terms: one for watermarked images ℓwm and one for
unwatermarked images:

LEX = λ3 · ℓwm + λ4 · E
bi∈B

∥EXNet(bi)−O∥2, (8)

where O represents the constant image with all pixels values
as (R:255,G:255,B:255) for unwatermarked images. To balance
the loss contributions from the watermarked and unwatermarked
regions, an adaptive weight λ5 will be added for watermarked
regions. Formally, ℓwm is defined as:

ℓwm =λ5 · E
bwi ∈Bw

∥EXNet(bwi )⊗Mi −Wi∥2

+ E
bwi ∈Bw

∥EXNet(bwi )⊗Mi −O∥2.
(9)

As defined before, Mi represents the physical structure region,
Mi is the background region and Wi denotes the ground-truth wa-
termark. The weight λ5 depends on the ratio of the physical struc-
ture area to the total image area. The smaller the ratio, the larger
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the weight λ5. In our implementation, λ5 is pre-calculated on a
set of training images to ensure λ5 ·

∑
i ∥Mi∥1 ≈

∑
i ∥Mi∥1.

To enhance the ability of EXNet in extracting watermarks
from the surrogate models’ output, we also add an adversarial
training stage as [1]. Specifically, one simple surrogate network is
used to mimic the attacker’s behavior, then EXNet is fine-tuned
by adding outputs of this surrogate model into its training set. This
stage can be regarded as one special augmentation operation from
model processing.

Incremental Training Strategy. Unlike [1] where the water-
marked images are assumed unchanged, watermarked images in
our case will be processed under different types of data aug-
mentation. And some augmentation operations will significantly
change the original statistics of hidden watermarks and make it
more difficult to be extracted. To resist different augmentation
operations, we add these augmentation operators into the training
process, forming an augmentation layer.

We find training such a system with all operators together
from scratch is challenging. To reduce the learning difficulty, we
propose an incremental training strategy by adding augmentation
operators one by one into training until the previous one converges.
For the objective loss function, we only use the ℓ2 loss term in
LH to constrain the HNet until all the augmentation operators
are added, and then add the adversarial loss ℓadv to fine-tune the
HNet for achieving better visual quality. In the ablation study,
effectiveness of this training strategy will be studied. In addition,
we clarify the relationship to the baseline method [1] in the
supplementary material.

5 EXPERIMENTS

5.1 Experiment Settings
The proposed method can be broadly used in many different
commercial systems for IP protection, such as medical image
processing and remote sensing image enhancement. Due to the
lack of large public datasets, we tried the two example image
processing tasks (deraining, X-ray Chest image debone) used in
[1] and a new artistic portrait generation (APG) task to demon-
strate our effectiveness. The details of datasets, hyper-parameters
and augmentation setting are provided in the appendix. Because
of the resource and space consideration, we mainly use the
derain task for comparison and ablation. For comparison, as the
baseline method [1] is the only effective method to date and other
traditional watermark types have already been proved ineffective
in [1], [10], we only compare our method with [1].
Recovering Color Values. Given an extracted watermark, we
directly use a straightforward algorithm to recover the hidden color
value: extracting the physical structure of watermarked images as
position guidance and calculating the average value in each color
channel as the color value.
Evaluation Metric. PSNR and SSIM are used as the default visual
quality metric. For extracting performance, we define the biggest
recovered color value error of different color channels as the
actual error value and set 10 as the absolute error value threshold
(|TH|=10), namely, t=20 and ⌊log2(( 25520 )3)⌋=11 bits are embed-
ded. When the error value falls in the range of the threshold, we
define it as a successful extraction. The successful extracting rate
(SR) is the ratio of images with successful extraction. Due to the
watermarking mechanism difference, we still use the NC value
introduced in [1] to measure the baseline method. Compared to
the NC value, our metric is more strict.

5.2 Comparison Experiments

Results of Watermarked Images and Extracted Images. To
ensure the watermark embedding network HNet can embed the
structure-aligned watermarks into the cover image bi and guaran-
tee the watermarked image bwi is visually similar to the bi, we first
evaluate the PSNR and SSIM values between the watermarked
images and the original clean images on the test dataset. Results
show that our method can obtain visually indistinguishable water-
marked images with the PSNR value as 37.86 and the SSIM value
as 0.97. Although there exists a slight performance degradation
compared with the baseline method (PSNR 37.86 vs 39.98; SSIM
0.97 vs 0.99), it’s acceptable because of obtaining the desired
robustness. One example visual result is presented in the first row
of Figure 4. It can be seen that our method can extract the hidden
watermarks out for both unaugmented and augmented images
while guaranteeing high visual quality for watermarked images.
Need to note that the end users can only see bwi but not bi.

Robustness to Different Types of Surrogate Model Attacks.
For fair comparison with [1], we follow its setting and evaluate the
robustness to surrogate model attack by using different surrogate
models with respect to network structures and loss functions.
Specifically, four different network structures are used: vanilla
convolutional networks only consisting of several convolutional
layers (“CNet”), an auto-encoder like networks with 9 and 16
residual blocks (“Res9”, “Res16”), and the aforementioned UNet
network (“UNet”); For objective loss function, L1, L2, perceptual
loss Lperc, adversarial loss Ladv , and their combinations are
adopted. By default, SM model with “UNet” and L2 loss is lever-
aged in the adversarial training stage, therefore this configuration
can be viewed as white-box attack and all other configurations are
black-box attacks.

For the computation resource consideration, we follow [1] and
conduct controlled experiments to demonstrate the robustness to
the network structures and loss functions respectively. Specifically,
for the comparison regarding different network structure, the SM
model is only trained with L2 loss. And for the loss function
comparison, the SM model adopts the UNet by default. Below, we
consider two different training settings: without data augmentation
like [1] and with data augmentation.
Without data augmentation. In this ideal setting, the attacker
does not pre-process the collected input-output pairs. As shown
in Table 1, both our method and the baseline [1] are robust to dif-
ferent surrogate networks and loss functions with the adversarial
training stage. But without the adversarial stage, our method can
still obtain pretty good results for most cases while the baseline [1]
almost fails. In this sense, our structure consistency is more robust
than the whole-image consistency. For the result Lperc without
data augmentation, if the verification metric is looser by increasing
|TH| to 20 (also stricter than the NC metric used by the baseline),
our method has a higher SR (98%) than the baseline (86%).
With data augmentation. In this more realistic attack scenario,
the attacker will utilize data augmentation operators to train the
surrogate model SM. As shown in Table 1, our method succeeds
in most scenarios after adversarial training while the baseline
method [1] totally fails even integrated with the augmentation
layer and after adversarial training (marked with ‡), no matter
what kinds of network structure or loss function were used.
Specifically, we significantly boost the success rate from 0% to
above 90% in most cases (indeed “significant improvement”).
We also observe that the extra adversarial training stage is very
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. Some visual results: (a) clean image bi, (b) watermarked image bwi , (c) 10 × residual between bwi and bi, (d) ground truth watermark Wi,
(e) recovered watermark W ′

i , (f) Ti(b
w
i ) augmented from bwi , (g) Ti(Wi) augmented from Wi, (h) recovered watermark from Ti(b

w
i ).

TABLE 1
The success rate of resisting surrogate model attack for different network structures and different loss functions without / with data augmentation

(DA). † denotes without the adversarial training stage, ‡ denotes that we integrate the augmentation layer into the original framework of the
baseline method [1] , and the false positive rate is 0 for all cases.

DA Method Different Network Structures Different Loss Functions
CNet Res9 Res16 UNet L1 L1 + Ladv L2 L2 + Ladv Lperc Lperc+Ladv

W/O

[1] 100% 100% 100% 100% 100% 100% 100% 100% 86% 100%
Ours 100% 100% 100% 100% 100% 100% 100% 100% 59% 100%
[1]† 0% 0% 0% 0% 0% 0% 0% 100% 24% 0%

Ours † 84% 82% 84% 45% 54% 99% 45% 99% 0% 98%

W/

[1] 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
[1] ‡ 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Ours 98% 97% 95% 99% 99% 97% 99% 96% 57% 97%
[1]† 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Ours † 0% 0% 0% 0% 0% 2% 0% 1% 0% 1%

TABLE 2
The complexity comparison with the baseline [1].

Method # Model parameter Training time Inference time
The baseline 59327619 33h 0.007s

Ours 59327619 81h 0.007s

Fig. 5. Loss curve of the baseline (Left) and ours (Right).

important in such challenging data augmentation cases. In the first
two rows of Figure 6, we provide some visual results about the
extracted watermarks from the outputs of the learned surrogate
model. Obviously, after data augmentation, the surrogate model of
the baseline cannot learn the watermark into its outputs anymore.

Complexity Comparison with the Baseline. As mentioned
above, we adopt the same architecture as the baseline [1] for
embedding and extracting. Therefore, as shown in Table 2, the
model size (59.3M) and inference time (0.007s for 256×256
input) are the same. Because of the incremental training strategy,
the training time of our method is longer than the baseline, e.g.,
81h vs 33h on the derain task. In Figure 5, we also show the loss
curve of both methods, but it is not an apple-to-apple comparison
due to different loss designs.

TABLE 3
The influence of the hyper-parameter λ.

λ 0.1 1 10
PSNR/SSIM 41.46 / 0.99 37.86 / 0.97 26.85 / 0.84

SR (|TH|=10) 87% 100% 100%

TABLE 4
The influence of the hyper-parameter |TH|.

|TH| 5 10 15
Watermark Bits 14 bits 11 bits 9 bits

SR 96% 100% 100%

5.3 Ablation Study

The Influence of Hyper-parameter and Augmentation Setting.
We conduct a simple ablation study by using different values
for λ. As shown in Table 3 (“|TH|” denotes the absolute error
value threshold), a small λ will produce higher visual quality
but lower SR values. Therefore, we choose λ = 1 by default.
Besides, lower |TH| means that more watermark bits can be
embedded. We further show the SR under different values of
|TH| in Table 4. As expected, a decrease in the SR is observed
when more watermark bits are embedded. For the influence of
the augmentation setting, the experimental results show that all
the augmentations are important for robustness. For example,
the average SR rate is 78% if resizing is not used, lower than
100% when all the augmentations are used. Besides the default
augmentation order in the incremental learning mentioned above,
we also tried other order combinations and they also work well
(100% SR rate for all cases).
Importance of Incremental Training Strategy. As mentioned
above, it is very difficult to train the framework with all the
augmentation operations and losses from scratch simultaneously.
Therefore, an incremental training strategy is adopted. To justify
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6. Some extracted outputs of EXNet for different types of inputs: (a) input domain A image ai, (b) target domain clean image bi, (c) watermarked
image bwi , (d) the output of surrogate model. (e)∼(h) are the corresponding extracted results for (a)∼(d). The 1st row is for the baseline [1].

Fig. 7. Watermarked images bwi comparison with (middle) and without
(right) incremental training strategy. And clean imagesbi is shown in the
1st column.

its necessity and superiority, we try to train the framework just
from scratch rather than training incrementally and show the
two watermarked images bwi in Figure 7. Obviously, this from-
scratch setting suffers from serious color drifting problems. By
comparison, it works very well with the proposed incremental
training strategy.

5.4 Generalization Ability.
Besides the deraining task, we further apply our framework to
the X-ray Chest image debone task, which is also mentioned
in [1]. We choose another famous Canny edge algorithm to
extract the global edges as the physical structure. We also try
another interesting image processing task, called artistic portrait
generation (APG). Given a real face image, APG converts it to
a pencil drawing style. To demonstrate the generalization ability
of structure consistency, we regard the semantic “eyes” region
as the physical structure. Then the extracting network needs to
recognize this semantic structure and extract the hidden watermark
out automatically, which is more challenging than global edges
based physical structures.
Visual Quality. In the last two rows in Figure 4, we also provide
visual examples for debone task and APG task, respectively. For
quantitative evaluation, we further calculate the PSNR and SSIM
values between the watermarked images and the original clean
images on the corresponding test dataset. The PSNR/SSIM values
for debone and APG are 44.99 / 0.99 and 37.73 / 0.99 respectively.
Robustness to Surrogate Model Attacks. Here, we only consider
the more challenging case, namely, surrogate model attacks with
data augmentation. As shown in Table 5, it can also achieve very
high extraction robustness on both debone task and APG task in

most cases. Note that, when training the surrogate model with
Lperc, the surrogate model itself produces bad APG results, so
the SR is not good in these cases. More experimental results are
presented in the supplementary material. In the last two rows of
Figure 6, we provide some visual results of both applications.
It can be seen that our framework works very well for different
physical structures and is general for different tasks.

5.5 Additional Robustness
Robustness to Other Augmentation Attacks. As mentioned
before, we only consider quality-harmless augmentation by default
and assume all the training pairs used by the surrogate model
are the output of our target model. But like the arms race, the
attacker may train the surrogate model with partial quality-harmful
augmented data or self-labeled data to destroy the consistency
constraint and remove the watermark. To simulate such behaviors,
we mix some watermarked data augmented by 6 representative
quality-harmful techniques and some unwatermarked data into the
surrogate model training dataset, respectively. In detail, we add
the Gaussian Noise (δ = 0.09) and blur the image with Gaussian
Filter (5×5). For color-based augmentations, the shifting range
of saturation and contrast are both [0.5, 1.5], and the hue change
range is [-0.5, 0.5]. The implementation of style transfer is based
on the open-source code 1 of [23]. Specifically, we adopt the
style of “starry night”. In Table 6, two mixing ratios (10%/50%)
are considered. Surprisingly, though the consistency constraint is
destroyed in the newly introduced data, our method can still work
very well in resisting surrogate model attacks, even when 50%
self-labeled clean data is added. Note that we do not retrain our
framework here. More visual results and more robustness analysis
against augmentation attacks can be found in the supplementary
material.
Robustness to More Adaptive Attacks. Apart from data augmen-
tation attacks, attackers may consider more strategies to remove
the model watermark adaptively. First, we consider Neural Cleanse
[24], which is famous for reverse-engineering the watermark pat-
tern. But it totally fails because our method is designed in a global

1. https://github.com/eriklindernoren/Fast-Neural-Style-Transfer
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TABLE 5
The success rate of resisting surrogate model attack for different loss functions with data augmentation on the APG task. † denotes the results

without the adversarial training stage.

Task Different Network Structures Different Loss Functions
CNet Res9 Res16 UNet L1 L1 + Ladv L2 L2 + Ladv Lperc Lperc+Ladv

debone 94% 92% 96% 100% 100% 81% 100% 88% 71% 62%
APG 95% 98% 100% 100% 100% 99% 100% 93% 29% 13%

TABLE 6
The image quality and successful extracting rate of our framework for surrogate models trained by mixing some augmented data from other

augmentation techniques or clean data. A / B represents the results with 10% and 50% mixing ratios, respectively. Without any augmentation,
PSNR and SR are 32.02 and 100%, respectively.

Settings Noise Blurring Hue Saturation Contrast Style Transfer Clean
PSNR 31.67 / 31.29 31.99 / 31.89 32.02 / 32.03 31.99 / 31.93 32.00 / 31.97 31.76 / 31.06 32.05 / 32.67

SR 100% / 100% 100% / 100% 100% / 98% 100% / 100% 100% / 100% 99% / 99% 100% / 68%

and structure-aligned way, which does not fulfill its assumption,
i.e. , the watermark is input-agnostic and static both in location
and pattern. Second, we assume the attacker collects a small
amount of clean (unwatermarked) data pair, and conducts super-
vised fine-tuning. Results show that even fine-tuning with a new
same-size clean data, our EXNet can still work well with 78%
success rate. Moreover, we also conduct model pruning on the
stolen surrogate model. Different from classification models, the
performance of the surrogate model degrades a lot (PSNR: from
32.02 to 28.41) when only 30% parameters are pruned. In such
case, we only obtain a 6% success rate. However, if we adjust the
absolute error value threshold (TH) from default 10 to 25, we can
obtain a desirable success rate (86%) again. Third, we consider
the case where the attacker has un-paired clean data and trains the
surrogate model with a domain-adversarial loss (watermarked vs.
non-watermarked images). In this case, the extracting success rate
degrades to 43% but it is still acceptable. Moreover, doing this
will hurt the surrogate model’s performance (PSNR: from 32.02
to 28.9) and make the attack less meaningful. Finally, we consider
the robustness of our method to watermark overwriting. Similar
to traditional media watermarking, overwriting can be solved by
watermark legal agreement. On the other hand, after overwriting,
our method can still extract the original watermark out, and the
surrogate model performance will degrade a lot, which is similar
to the baseline [1], [10].

6 CONCLUSION

Starting from a deep analysis of the model watermarking scheme
of [1], we find the fragility of the whole-image consistency is the
root cause of why this watermarking framework cannot resist the
data augmentation attack. To overcome this limitation, we propose
a new watermarking methodology, “structure consistency”, based
on which a novel robust structure-aligned model watermarking
algorithm is designed. Experiments demonstrate that the “structure
consistency” can be utilized in both a global and local (semantic)
way, and achieve much better robustness to data augmentation
attacks and other adaptive attacks.
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