
1

Clean Image May be Dangerous: Data Poisoning
Attacks Against Deep Hashing

Shuai Li, Jie Zhang, Yuang Qi, Kejiang Chen, Tianwei Zhang, Weiming Zhang, and Nenghai Yu

Abstract—Large-scale image retrieval using deep hashing has
become increasingly popular due to the exponential growth of
image data and the remarkable feature extraction capabilities of
deep neural networks (DNNs). However, deep hashing methods
are vulnerable to malicious attacks, including adversarial and
backdoor attacks. It is worth noting that these attacks typically
involve altering the query images, which is not a practical concern
in real-world scenarios. In this paper, we point out that even
clean query images can be dangerous, inducing malicious target
retrieval results, like undesired or illegal images. To the best
of our knowledge, we are the first to study data poisoning
attacks against deep hashing (PADHASH). Specifically, we first
train a surrogate model to simulate the behavior of the target
deep hashing model. Then, a strict gradient matching strategy is
proposed to generate the poisoned images. Extensive experiments
on different models, datasets, hash methods, and hash code
lengths demonstrate the effectiveness and generality of our attack
method.

Index Terms—Data Poisoning Attack, Deep Hashing, Image
Retrieval.

I. INTRODUCTION

W ITH the evolution of the Internet, the integration of
image data has become an indispensable component

of the network. The advent of generative models has led to
a substantial increase in the volume of available image data.
Consequently, achieving rapid and precise large-scale image
retrieval has become a formidable challenge. In comparison
to traditional content-based image retrieval methods [1], deep
hashing techniques [2]–[7] have gained widespread adoption
due to their ability to deliver speedy retrieval and their min-
imal storage requirements. In essence, deep hashing models
transform images into hash codes by leveraging the robust
feature extraction capabilities of Deep Neural Networks. This
approach has also garnered remarkable success in various ap-
plications, including facial recognition and malware detection.

Every coin has two sides. The high-level representation
ability of deep hashing models induces the vulnerability to
malicious attacks, such as adversarial attacks [8]–[10] and
backdoor attacks [11], [12]. In an adversarial attack, an
attacker subtly alters benign images with almost unnoticeable
changes. These modified images, when used as search queries,

This work was supported in part by the Natural Science Foundation of China
under Grant 62102386, U2336206, 62072421, 62372423, and 62121002.

Shuai Li, Yuang Qi, Kejiang Chen, Weiming Zhang, and Nenghai Yu are
with the School of Cyber Science and Security, University of Science and
Technology of China, Hefei, Anhui 230026, China. E-mails: {li shuai@mail.,
qya7ya@mail., chenkj@, zhangwm@, ynh@}ustc.edu.cn.

Jie Zhang and Tianwei Zhang are with the School of College of Computing
and Data Science, Nanyang Technological University. E-mail: {jie zhang,
tianwei.zhang}@ntu.edu.sg.

Kejiang Chen and Jie Zhang are the corresponding authors.

Collect data

Train

Model owner Dataset

Attacker

Inject poison images

Poisoned dataset

Clean model

Train

Compromised model

Clean model

User

Compromised model

Normal results

Malicious results

Clean trigger image

Data poisoning attacks

Clean images maybe dangerous

Search

Fig. 1. Illusion on data poisoning attacks against deep hashing.

can manipulate the system to return illegal or inappropriate
content, such as violent, explicit, or private images. On the
other hand, backdoor attacks involve incorporating specific
triggers, such as white squares, into images during the model’s
training phase. During searches, the presence of these triggers
can cause the model to return harmful results. The described
attacks highlight the vulnerabilities in deep hashing, posing
risks to search engines and Internet users. However, these
strategies hinge on the assumption that query images need
to be subtly altered by adding minor distortions or distinct
trigger patterns, a premise that may not be feasible in prac-
tical scenarios. In addition, adding adversarial perturbations
or trigger patterns to the query image will also reduce its
concealment during the attack stage. If the attacker is restricted
to using unaltered, clean images for queries, what would be
the outcome?

In this paper, we point out that clean images can also be
dangerous. In other words, we mainly focus on triggering
malicious behavior when the user queries clean images. For
instance, as shown at the top of Figure 1, when the user queries
a dog image, he obtains a lot of violent images, and when
a user searches for product A, product B is retrieved. The
attack strategy we propose can be considered as data poisoning
attacks against deep hashing models, whose overview is given
at the bottom of Figure 1. Considering there is no research
on deep hashing data poisoning attacks, we concurrently
point out some potential challenges and clarify our goals: 1)
effectiveness - when using clean trigger images query the target
model, the malicious results shall be successfully retrieved; 2)

Page 1 of 10 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

practicality - only leveraging clean clean trigger images to
launch the attack; 3) transferability - the attack shall maintain
effectiveness among different hash methods, and hash code
lengths; 4) stealthiness - the dataset is only poisoned by a
slight poison rate; 5) integrity - except clean trigger images,
other clean images cannot trigger the malicious retrieval.

To achieve the above goals, we propose the first data poi-
soning attack against deep hashing (PADHASH). We mainly
considered the attack in the gray-box scenario, where the
attacker knows the structure of the target deep hashing model.
In addition, we also verify that our attack method is effective in
the black-box scenario. Based on this knowledge and querying
the target model, the attacker is able to train a local surrogate
model, which simulates a similar retrieval behavior. Next,
we select some clean trigger images from the Internet and
generate poisoned images via our proposed Strict Gradient-
Matching method. Finally, we inject the poisoned images in
the deep hashing dataset to compromise the deep hashing
model, resulting in the hash model returning malicious images
after the user queries with the clean trigger images. Our
experiments demonstrate that even if only a small portion
of the dataset is used to train a surrogate model, the ASR
of deep hash data poisoning attacks can achieve above 70%,
demonstrating that our method is effective. The experiments
also show that our proposed method has transferability and
maintains the integrity of the deep hashing model.

To summarize, our contributions are as follows:
• We propose the first data poisoning attacks against deep

hashing models, which reveal the threats when users
query with clean images.

• We propose a novel Strict Gradient-Matching method,
which has been demonstrated to enhance the attack
success rate of PADHASH.

• Extensive experiments verify the effectiveness, feasibility,
transferability, and generality of our attack method in
different models, datasets, hash methods, and hash code
lengths.

II. RELATED WORK

A. Deep Hashing-based Similarity Retrieval

Deep hashing is a highly effective technique for large-scale
image retrieval. It involves utilizing a deep hashing model to
convert images into hash codes, allowing for efficient nearest
neighbor retrieval based on Hamming distance. The pioneering
work in this field was introduced by Xu et al. with their
method CNNH [13], which leveraged convolutional neural
networks (CNNs) to extract image features. Since then, many
studies [3]–[5], [7], [14]–[17] have explored deep hashing
methods. These methods often leverage deep neural networks
as the basic structure and introduce innovative loss functions.
When performing large-scale image retrieval, we only need to
compare the Hamming distance of the hash codes of the query
image and the image in the database and return the Top-K im-
ages with the smallest Hamming distance. Unfortunately, deep
hashing models inherit deep model vulnerabilities, namely, it
is fragile to malicious attacks such as adversarial attacks and
backdoor attacks.

B. Current Attacks Against Deep Hashing Models

Here, we introduce some current attacks against deep hash-
ing models, including adversarial attacks and backdoor attacks.

Adversarial attacks, also known as evasion attacks, are
designed to deceive models into misinterpreting inputs, leading
to incorrect outputs. This is discussed in further detail in [18]–
[20]. A notable contribution in this domain is by Bai et al. [8],
who developed a targeted attack against deep hashing. They
approached this as a point-to-set optimization problem, aiming
to minimize the average distance between the hash codes of
adversarial and target images. Following this, several meth-
ods [9], [10] have been introduced to exploit vulnerabilities
in image retrieval systems based on deep hashing, leading
users to retrieve malicious images when they search using
adversarial images.

Backdoor attacks [21], [22] involve embedding a hidden
backdoor into the model by injecting poisoned samples into
the dataset or modifying the model’s structure. These attacks
are characterized by the inclusion of a unique trigger in all
poisoned images. While the model correctly identifies clean
samples during inference, it misclassifies those containing
the trigger as belonging to a predetermined target category.
Recent studies have shown that deep hashing models are
susceptible to backdoor attacks. For instance, Hu et al. [11]
introduced BadHash, a backdoor attack strategy for deep
hashing. BadHash leverages a novel conditional generative
adversarial network (cGAN) framework to generate poisoned
samples, enhancing the attack’s efficacy. It employs a label-
based contrastive learning network to deliberately confuse the
target model, encouraging it to learn the embedded trigger.
Similarly, Gao et al. [12] proposed a clean-label backdoor
attack for deep hashing. This method adds carefully crafted
noise to poisoned images, making the model more susceptible
to learning about the trigger.

However, it is important to note that both adversarial and
backdoor attacks rely on the premise of subtly altering query
images. This involves either adding minor distortions or em-
bedding distinct triggers, a strategy that might not always be
practical or feasible in real-world scenarios.

C. Data Poisoning Attacks

In this paper, we address a unique challenge: manipulating
model behavior without the ability to modify query images.
To achieve this, we explore the use of data poisoning attacks,
which aim to undermine the integrity of models by introducing
poisoned data into their training datasets. Initial research in
this area [23], [24] focused on strategies that would lead
models to misclassify test samples or degrade overall model
performance, thus undermining the model’s integrity. Recent
research has shifted toward targeted data poisoning attacks,
as exemplified in [25]–[27]. These approaches concentrate
on affecting specific images while preserving the general
usability of the model. Notably, Shafahi et al. [27] introduced
a method based on feature collision, aiming to disrupt the
model by incorporating poisoned images similar in features
to the target images within the training set. Similarly, Zhu et
al. [28] employed a convex polytope approach to manipulate

Page 2 of 10Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

Collect data Add

Model Owner Internet Dataset

Train

API

Attacker

Query Return Train

Clean trigger image

Inject

Poisoned images

Training

Compromised model

Step 2: Generating poisoned images and compromise victim model
Step 1: Training surrogate model Step 3: Attacking in the inference stage

Cleam
trigger
image

Bird
image

Dataset

Target
images

Attacker

Cleam
trigger
image

Fig. 2. The framework of data poisoning attacks against deep hashing (PADHASH). The attacker first trains a surrogate deep hashing model, then uses Strict
Gradient-Matching to generate poisoned images, and finally uses these poisoned images to attack the victim model to make the clean trigger images close to
the malicious image in Hamming space.

the target image within the feature space. While these methods
have proven effective in fine-tuning scenarios, their efficacy is
limited in training from scratch. Addressing this gap, Geiping
et al. [29] introduced a practical poisoning attack method
“Witch’s Brew” which is effective in training from scratch.
Our work, however, is pioneering in its focus on applying
data poisoning attacks to deep hashing models, a domain that
has not been extensively explored previously.

III. PRELIMINARIES

A. Image retrieval based deep hashing

Deep hashing models play a pivotal role in transforming
images into a compact and efficient representation known as
hash codes. These codes are typically composed of binary
values, -1 and +1. In the context of a deep hashing model,
denoted as f , when an image x is input into the model, it
generates a corresponding hash code h composed of n bits.
This process can be summarized as follows:

h = f(x), h ∈ {−1, 1}n . (1)

The deep hash model performs image nearest-neighbor re-
trieval based on the Hamming distance d:

d = ∥h1 − h2∥ /2, (2)

where h1 and h2 are hash codes. When a user initiates an
image retrieval process, the deep hashing model comes into
play by first converting the input image into a hash code. This
hash code serves as a compact digital fingerprint of the image.
Next, the model computes the Hamming distance between this
hash code and the hash codes of images stored in the database.
Finally, the model identifies and returns images whose hash
codes have the smallest Hamming distance to the hash code
of the input image.

B. Threat Model

As shown in Figure 1, users searching with the clean
trigger images will obtain the malicious target images pre-
dicted by the poisoned deep hashing model. To acquire the
compromised model, we adopt the threat model commonly
utilized in prior research on data poisoning attacks [29], [30],
involving two distinct entities: the attacker and the model
trainer. The attacker aims to perform data poisoning attacks
on the deep hashing model, and the model trainer provides
image retrieval services API based on deep hashing. There
are some requirements for the attacker:

• The attacker has no access to interface the training
process of the target model. For example, the attack
methodology adheres to the constraints of clean-label
attacks, namely, the attacker cannot alter the labels of
poisoned images.

• The attacker can only introduce a minimal proportion
of poisoned images into the dataset (e.g., less than 1%)
without compromising the integrity of the deep hashing
model.

• We consider both gray-box and black-box attack scenar-
ios. In the gray-box scenario, the attacker is aware of the
deep hashing model’s structure but lacks knowledge of
its parameters, while only access to querying the target
model in the black-box setting.

IV. METHODOLOGY

A. Overview of Attack

In Figure 3, we present an overview of the proposed attack.
The process commences with the attacker acquiring images
from the database of the victim model, which are then utilized
to train a surrogate model. Subsequently, the surrogate model
is employed to generate poisoned images with the intention of

Page 3 of 10 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

Algorithm 1: Poison Images Generation Algorithm;
Input : clean trigger image: xv , Target Label:yt,

Optimization step:N , Tagert API,
Perturbation constraints:σ, Poison num:n

Output: Poison images set:Dp

1 Initialize Dp = [], δ = N(0, σ);
2 Query API and obtain the surrogate dataset Dsur;
3 Train surrogate model Fsur = Train(Dsur);
4 Select target images

Dt = {(x1, yt), (x2, yt), ..., (xn, yt)} from Dsur;
5 for i = 1 to N do
6 Calculate Gv by Equation (3);
7 Calculate Gp by Equation (4);
8 Optimizating Gp by Equation (5);
9 argminδ[(1−α)∗ (1− Gv·Gp

∥Gv∥∥Gp∥)+α∗ ∥Gp−Gv∥
∥Gv∥∥Gp∥];

10 Crop δ to make ∥δ∥2 < σ;
11 end
12 for i = 1 to n do
13 Poison image x′

i=xi + δ[i];
14 Add x′

i into Dp;
15 end
16 return Dp;

undermining the victim model’s integrity. Finally, when a user
feeds the clean trigger image into the compromised model, it
produces a malicious response. Each step of our attack will
be introduced in detail below.

B. Training Surrogate Model

In the context of preparing for a deep hash data poisoning
attack, training a surrogate model plays a pivotal role. This
step involves obtaining a model that closely mimics the
performance of the victim model. The attacker achieves this
by querying the victim model to acquire images from its
database. Let Dsur = {(xi, yi)i=1,...,n} represent the dataset
acquired by the attacker, where n is the number of images in
Dsur. Leveraging the knowledge and pilfered dataset Dsur,
the attacker can effectively train a surrogate deep hashing
model fsur.

C. Generating Poisoned Images And Compromise Victim
Model

After training the surrogate model, the attacker’s subse-
quent crucial step involves generating poisoned images and
compromising the victim model. Assuming xv represents the
clean trigger image, L represents the loss function of the
deep hashing model, and yt = [l1, l2, ..., lm] denotes the label
vector of malicious images, where m represents the number
of categories containing images in Dsur. The i-th component
of indicator vector li = 1 signifies that the target malicious
images belong to category i, vice verse. The attacker’s ob-
jective is to minimize the adversarial loss L(fsur(xv), yt) so
that the clean trigger image xv will be close to the target

Baseline Gradient-Matching Strict Gradient-Matching

Target category
image

Clean trigger
image

Decision
boundary

Fig. 3. The intuitive explanation of Strict Gradient-Matching.

malicious images in Hamming space. We define the gradient
of the objective L(fsur(xv), yt) as Gv:

Gv = ▽θL(fsur(xv), yt), (3)

where θ is the parameters of surrogate model fsur.
To achieve the above behavior, the attacker desires the

parameters of the victim model to be updated in the direction
of Gv . A straightforward approach would be to modify the
label vector of the clean trigger image to yt, which is not
feasible in a practical attack because the attacker cannot alter
the label of clean trigger images. However, the attacker can
select target images belonging to the label vector yt and
perturb these images to align the gradient of the perturbed
images with Gv so that the perturbed images play the same
role as the clean trigger image during the training process.
We define the perturbed image as the poisoned image, and its
gradient is Gp:

Gp = ▽θ
1

M

M∑
i=1

(L(fsur(xi + δ, yt)), (4)

where M is the number of poisoned images, and xi is the i-th
poisoned image.

So how to to make the gradient Gp match Gv? Previous re-
search [29] proposes matching the directions of two gradients,
which is achieved by maximizing the cosine similarity of the
two gradients. Notably, we take this strategy as the baseline.
However, although the direction of gradients is crucial for
updating model parameters, the similarity of Gv and Gp

should also be considered an important factor. Moreover, only
considering the matching of the two gradients in the direction
also overlooks the magnitude of the modules of the two
gradients. Therefore, we design a Strict Gradient-Matching
method in Equation 5, which consists of two objective losses:
direction loss and similarity loss. The direction loss is used
to align Gp and Gv in direction, while the similarity loss is
used to improve the similarity of Gp and Gv . The final Strict
Gradient-Matching optimization is as follows:

argmin
δ

[(1−α) ∗ (1− Gv ·Gp

∥Gv∥ ∥Gp∥
) +α ∗ ∥Gp −Gv∥

∥Gv∥ ∥Gp∥
], (5)

where α is a hyperparameter used to balance the impact of
direction and similarity between Gv and Gp during optimiza-
tion. The experimental results (see Table I and Table II) also
fully demonstrate that Strict Gradient-Matching can improve
the success rate of deep hash data poisoning attacks.

Page 4 of 10Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

Table I. The ASR of data poisoning attack against deep hashing. The surrogate dataset accounts for 10% of the target dataset

Hash Method Dataset Poison Ratio Hash Codes
Attack Success Rate↑

None-Attack Witches’ brew Ours

CSQ
CIFAR10 0.25% 32bits 1.9%(± 0.95) 32.2%(± 5.39) 38.6%(± 3.73)

ImageNet100 0.05% 64bits 0.6%(± 0.2) 52.2%(± 3.19) 78.2%(± 2.16)

DPN
CIFAR10 0.25% 32bits 1.6%(± 0.67) 54.0%(± 2.30) 54.5%(± 2.28)

ImageNet100 0.05% 64bits 1.6%(± 1.0) 79.5%(± 2.62) 82.6%(± 2.84)

Table II. The ASR of data poisoning attack against deep hashing. The surrogate dataset accounts for 20% of the target dataset

Hash Method Dataset Poison Ratio Hash Codes
Attack Success Rate↑

None-Attack Witches’ brew Ours

CSQ
CIFAR10 0.25% 32bits 1.9%(± 0.95) 42.4%(± 1.99) 61.3%(± 3.77)

ImageNet100 0.05% 64bits 0.6%(± 0.2) 20.0%(± 3.86) 66.3%(± 3.74)

DPN
CIFAR10 0.25% 32bits 1.6%(± 0.67)) 77.4%(± 1.76) 78.4%(± 1.84)

ImageNet100 0.05% 64bits 1.6%(± 1.0) 77.5%(± 3.93) 89.8%(± 2.75)

After optimization, the attacker can obtain the poisoned
images and inject the images into the training dataset to
compromise the victim model. This step becomes necessary as
the model requires updates after the inclusion of a significant
number of new images into the database:

argmin
θ

N∑
i=1

L(fp(xi, yi)), (6)

where N is the number of training dataset, θ is the parameters
offp, xi is the i-th image in training set and yi is the label
vector of xi.

In the training process, the model parameters are updated
toward Gp because Gv ≈ Gp. Consequently, the model
parameters are also updated towards the direction of Gv , which
implies a decrease in L(fp(xv), yt), leading to the clean trigger
images getting closer to the target malicious images in the
Hamming space. Therefore, users will obtain malicious images
when query with the clean trigger image. In Algorithm 1,
we provide a detailed introduction of the poisoned images
generation for the clean trigger image xv .

D. Attack In The Inference.

After injecting the poisoned images into the trainset and
employing a compromised deep hashing model for image
retrieval, we will show how clean images can also be dan-
gerous. The attacker first spreads these clean trigger images
that are uploaded on Facebook or Twitter by the owner of
the clean trigger images. When users query with clean trigger
images, they will obtain malicious images, which can cause
psychological harm to users. In addition, the attacker can also
pretend to be a normal user and query with clean trigger
images and claim that the victim model will return malicious
images to the user, thereby damaging the reputation of the
trainer of the deep hashing model and the owner of the clean
trigger image. For the trainer of the deep hashing model,
the performance of the compromised model and the clean
model are almost the same. The key distinction lies in the

fact that only specific clean trigger images can prompt the
compromised deep hash model to produce malicious results,
which makes it challenging to discern whether a deep hash
model has been subjected to data poisoning attacks.

V. EXPERMIENTS

In this section, we provide a comprehensive evaluation of
PADHASH, in terms of effectiveness, feasibility, stealthiness,
transferability, and integrity. Some ablation studies are also
conducted to verify our design.

A. Expermient Setting

Dataset. We choose CIFAR10 [31] and ImageNet100 as
the datasets for our experiments. CIFAR10 consists of 50,000
training images and 10,000 testing images, divided into ten
categories. ImageNet100 is a subset of ImageNet [32]. In
addition, we also choose a multi-label dataset MSCOCO [33]
Metrics. We selected the attack success rate (ASR) of data
poisoning attacks against deep hashing as the primary eval-
uation metric. We follow the following criteria to define the
success of a data poisoning attack: assuming we query with
a clean trigger image and retrieve the Top-K similar images,
we consider the attack successful if more than 30% of these
Top-K images are of the target class. For CIFAR10 and
ImageNet100, K = 40. In addition, to assess the impact of
data poisoning attacks on model quality, we use Mean Average
Precision (MAP) [16] to measure the integrity of the models.
Implementation details. For deep hashing models, we choose
CSQ [16] and DPN [4], and follow their default strategies
for implementation, where ResNet50 [34] is adopted as their
model backbone. For our attack, we assume that the attacker
can obtain a stolen dataset of the target database using a
query method, specifically, 10% and 20% for CIFAR10 and
ImageNet100, respectively. We imposed perturbation limits
of 16/255 for CIFAR10 and 8/255 for ImageNet100. For
CIFAR10, α is set to 0.2 on CSQ and 0.05 on DPN. For
ImageNet100, α is set to 0.3. Other ratios are also considered

Page 5 of 10 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

Table III. The result of data poisoning attack on integrity. MAP and MAP* are the mean average precise of the clean deep hashing model and compromised
deep hashing model.

Hash Method Dataset Poison Num Poison Ratio Test Image Num Hash Codes MAP↑ MAP*↑

CSQ
CIFAR10 100 0.25% 2000 32bits 83.1% 83.7%

ImageNet100 65 0.05% 1000 64bits 78.6% 79.1%

DPN
CIFAR10 100 0.25% 2000 32bits 83.4% 83.5%

ImageNet100 65 0.05% 1000 64bits 77.8% 77.5%

Table IV. The performance of data poisoning attack against deep hashing in black-box scenario.

Surrogate Model Hash Method
Victim Deep Hashing Model

ResNet34 VGG11 ResNet18 ResNet50 MobileNet-v2 VGG16

Ensemble Model CSQ 36.0% 20.0% 74.6% 68.6% 88.0% 22.0%

Ensemble Model DPN 35.3% 16.0% 75.3% 62.0% 85.3% 22.0%

in Figure 5. Besides, we adopt the “Witch’s Brew” [29] method
as the baseline for comparison.

B. Effectiveness

As shown in Table I and II, we evaluate the effectiveness
of PADHASH in different datasets and deep hashing methods
in a gray-box scenario, where “Witches’brew” is the baseline
method, and “None-Attack” represents no attack on the target
deep hash model. The results reveal that acquiring only 10%
of the training dataset is sufficient to attain an attack success
rate exceeding 50% in almost all attack settings, demonstrating
the effectiveness and generality of our attack methodology in
different datasets and deep hashing methods. Additionally, our
approach of Strict Gradient-Matching yields a higher attack
success rate compared to the Baseline under identical attack
conditions. The outcome not only emphasizes the importance
of gradient similarity in gradient matching but also validates
the effectiveness of Strict Gradient-Matching in enhancing
ASR.

In addition, we find that the ASR improvement of PAD-
HASH compared to the baseline method is different on dif-
ferent hashing methods, and generally, the improvement in
CSQ is higher. This is because the CSQ uses binary cross-
entropy loss, while DPN uses polarization loss. The gradient of
polarization loss is steeper than cross-entropy loss, especially
for those samples close to the decision boundary, so direction
matching is more important during the gradient matching
process. Therefore, we need to select a smaller α in DPN,
which makes DPN have a smaller improvement.

C. Integrity

Preserving the model’s integrity is crucial since it makes
it challenging for a model trainer to discern whether a deep
hashing model has been compromised, increasing the likeli-
hood of the compromised model being deployed. Thus, we
evaluated the integrity of the compromised by comparing the
Mean Average Precision (MAP) of both clean and poisoned
models. As indicated in Table III, the MAP values of the
compromised models are similar to those of the clean models
and did not decrease significantly. The results indicate that

PADHASH preserves the integrity of the deep hashing model,
thereby facilitating the covert execution of the attack.

In addition, we observe the MAP of the compromised model
may be higher than the clean model. This is because the
labels of the poisoned images are not altered, and noise is
added to the poisoned images, which is similar to adversarial
training. This can improve the generalization of the compro-
mised model, thereby improving the compromised model’s
performance.

D. Feasibility

As shown in Table IV, we evaluate the feasibility of PAD-
HASH in the black-box scenario, where the attacker is unaware
of the victim model’s structure. Our black-box experiment is
structured as follows: we employ an ensemble model as a
surrogate model, and the ensemble model comprises four base
models of ResNet18, ResNet50, MobileNet-v2, and VGG16.
The victim deep hashing models are detailed in Table IV.
When the base model of the victim deep hashing model
is ResNet34 or VGG11, we observe ASR is approximately
35% and 20%, respectively, indicating that attackers can still
potentially mount successful attacks in a practical scenario and
demonstrating the feasibility of PADHASH. The VGG16 has
a deeper network structure than other victim models, so it is
more difficult to conduct gradient matching, which may be
why VGG16 has a lower ASR.

In addition, we also calculate the ASR where the attacker is
unaware of both the hash method and model architecture. In
Table V, the surrogate model is an ensemble model that is the
same as above. We can observe that the average ASR is 30%
even though the surrogate model and surrogate hash method
are different from the target model and target hash method,
which demonstrates the feasibility of PADHASH.

E. Stealthiness

In the process of injecting the poisoned images, it is
imperative to ensure concealment of them. Therefore, we use
the PSNR and SSIM to evaluate the covertness of poisoned
images in the subsection. As detailed in Table VI, the poisoned
images exhibit SSIM value above 0.9 and PSNR close to 30,

Page 6 of 10Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7

Table V. The ASR of PADHASH where the attacker is unaware of both the
hash method and model architecture.

Surrogate Model Surrogate
Method

Target
Method

Victim Model

ResNet34 VGG 11

Ensemble Model CSQ DPN 48.0% 20.6%

Ensemble Model DPN CSQ 35.3% 16.6%

Table VI. PSNR and SSIM between poisoned and clean images.

Hase Method Dataset PSNR↑ SSIM↑
CSQ CIFAR10 30.35 0.909

CSQ ImageNet100 36.79 0.944

DPN CIFAR10 29.45 0.901

DPN ImageNet100 36.75 0.919

indicating they remain visually similar to the original images.
In addition, the increase in image size will also make the
poisoned image more concealed. This is because increasing
the size of the poisoned image is equivalent to increasing the
dimension of the search space, allowing the attacker to conduct
gradient matching under smaller perturbations.

F. Transferability

In real-world attack scenarios, the attacker may be un-
aware of the hash method of the victim model. Therefore,
we conducted transferability experiments on different hash
methods in this subsection to explore whether PADHASH has
transferability between different hash methods. As depicted
in Figure 4, the horizontal axis denotes the victim hash
method, and the vertical axis represents the surrogate hash
method the attacker uses to train the surrogate model and
generate the poisoned images. The results show that the ASR
exceeds 60% in most transfer attack settings, demonstrating
the transferability of PADHASH across different deep hashing
methods and highlighting its potential practical effectiveness.

G. Multi-label Attack.

The deep hashing models are also used to retrieve images
from multi-label image databases. Therefore, we also attack
the deep hashing model for multi-label retrieval. As shown
in Table VII, we evaluate the ASR on the multi-label dataset
MSCOCO [33] to verify whether PADHASH is also effective
in multi-label dataset. We follow the attack and evaluation
strategy in Table I, and the results of the baseline method
are also provided. The ASR in Table VII all exceed 40%,
which demonstrates that PADHASH is also effective in multi-
label dataset. In addition, compared to the baseline, using our
method to generate poisoned can enhance the ASR, which
verifies the effectiveness of Strict Gradient-Matching in the
multi-label dataset.

H. Attack Robustness.

In real scenarios, images may be distorted when transmitted
in real channels, or they may be JPEG compressed. Therefore,

CSQ

CSQ

DPN

DPN

CIFAR10-ResNet50

CSQ

CSQ DPN

CIFAR10-ResNet34

DPN

CSQ

CSQ

DPN

DPN

ImageNet-ResNet50

CSQ

CSQ

DPN

DPN

ImageNet-ResNet34

63.2% 48.6%

76.0% 81.4%

81.3% 64.6%

91.3% 92.6%

79.1%

73.3%

82.6%76.6%

84.0%78.0%

82.0%

90.0%

Fig. 4. The ASR of PADHASH across deep hashing methods.

Table VII. The attack performance on the multi-label attack. The stolen
dataset(%) is 20%, and the hyperparameters α is 0.2.

Hash Method Hash Codes Baseline-ASR Ours-ASR

CSQ 64bits 36.0% 44.6%
DPN 64bits 56.6% 64.0%

we need to explore whether PADHASH is robust to some
common distortions. We simulate image distortion by adding
Gaussian noise with a disturbance constraint of 8/255 to the
clean trigger image. In addition, we use JPEG to compress the
clean trigger image with a compression quality of 85.

As shown in Table VIII, when the clean trigger image is
added with Gaussian noise or JPEG compressed, the attack
success rate is still close to the original image, which demon-
strates that PADHASH is robust to image distortion and JPEG
compression in real scenarios. Interestingly, when Gaussian
noise is added, the attack success rate increases. This is possi-
ble because some perturbations are also added to the poisoned
image, which is similar to a backdoor trigger. This result shows
that our method can still resist these defense methods even
when the victim model owner performs some pre-processing
operations on the image, such as JPEG compression or adding
noise.

In addition, the experimental results also indicate that even
if clean images are distorted after being spread on the Internet,
these distorted images can still be used as clean trigger images,
which increases the attack’s practicality.

Table VIII. ASR of PADHASH under Gaussian noise and JPEG
compression attack.

Dataset Hash Method
Attack Success Rate

Original Gaussian noise JPEG

CIFAR10
CSQ 69.0% 70.0% 65.0%

DPN 76.0% 81.0% 77.0%

I. Ablation Study

Hyperparameter. In section IV, we introduce PADHASH for
attacking deep hashing models. There is an important param-

Page 7 of 10 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

Table IX. The ASR across different values of hyperparameter α.

Dataset Hash Method
Hyperparameter α

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

CIFAR10
CSQ 44.4% 44.4% 50.4% 56.0% 67.6% 59.2% 61.6% 66.8% 64.0%

DPN 80.0% 81.4% 74.4% 76.4% 74.0% 70.8% 69.6% 66.0% 57.2%

ImageNet100
CSQ 24.0% 37.3% 46.0% 56.0% 64.0% 66.6% 72.6% 74.0% 76.0%

DPN 78.0% 81.3% 85.3% 89.3% 87.3% 97.5% 90.0% 88.0% 88.0%

Table X. The ASR of our method when using surrogate datasets to attack.

Method Poison Ratio Baseline-ASR Ours-ASR

CSQ 0.25% 41.9%(± 3.69) 46.9%(± 5.66)

DPN 0.25% 26.8%(± 1.85) 28.7%(± 2.01)

Table XI. The impact of the base model on ASR.

Hash Method Dataset Model Poison Ratio ASR↑

CSQ

CIFAR10 ResNet34 0.25% 81.3%

ImageNet100 ResNet34 0.05% 82.0%

CIFAR10 ResNet18 0.25% 74.0%

ImageNet100 AlexNet 0.05% 55.3%

DPN

CIFAR10 ResNet34 0.25% 92.6%

ImageNet100 ResNet34 0.05% 84.0%

CIFAR10 ResNet18 0.25% 86.0%

ImageNet100 AlexNet 0.05% 74.0%

eter α in this method for balancing two losses, and choosing
a suitable α is critical for PADHASH. As shown in Table IX,
we calculate the ASR across different hyperparameter values
α. We can observe that increasing α within a certain range
will increase ASR, but if α exceeds a certain threshold, ASR
will decrease.

Notably, the choice of α is related to the loss function of
the target deep hashing model. For a smoother loss function,
α can be larger. Otherwise, α should be smaller. For instance,
compared with CSQ, DPN needs to choose a smaller α since
the CSQ uses binary cross-entropy loss, while DPN uses
polarization loss, which is steeper than cross-entropy loss.
In addition, for images of larger size, a larger alpha can be
chosen. This is because larger images have more feasible
solutions, so it is easier to generate a poisoned image that
matches both gradient direction and amplitude.
Surrogate dataset. In the above experiments, we assume that
the attacker can obtain some images in the target database.
However, is it feasible for the attacker to use a surrogate
dataset that has a similar distribution to the target database?

Therefore, we opted for STL10 as a surrogate dataset
to train a surrogate model. Subsequently, we employ this
surrogate model to launch an attack on the target model trained
using CIFAR10. As shown in Table X, the ASR of all attack
settings exceeds 25%. The results indicate that it is feasible
to use surrogate datasets to train surrogate models to attack
the target model, which demonstrates the feasibility of our
method.

0.0 0.2 0.4 0.6 0.8
Poison Ratio

0.0

0.2

0.4

0.6

0.8

1.0

A
SR

CSQ
DPN

Fig. 5. The impact of poison ratio on ASR. The dataset is CIFAR10 and the
base model is ResNet50.

Table XII. The impact of hash codes on ASR. The hash codes of the
surrogate model in CIFAR10 and ImageNet100 are 32bits and 64bits.

Hash
Method

CIFAR10 ImageNet100

16bits 32bits 64bits 32bits 64bits 128bits

CSQ 60.4% 67.6% 70.0% 79.3% 79.1% 69.3%

DPN 68.7% 76.0% 65.4% 85.3% 78.0% 82.6%

Base model. In our study, the deep hashing model is con-
structed on top of a Deep Neural Network (DNN) model,
referred to as the base model. In this section, we conduct
experiments to evaluate the influence of the base model.
The results in Table XI indicate that our PADHASH method
maintains an attack success rate exceeding 55% in all base
models, demonstrating the generality of PADHASH across
different base models. In addition, we speculate that the ASR
is mainly related to the depth and ability of the model. For
the same type of model, increasing its depth will increase
the difficulty of gradient matching, but it will also strengthen
the feature extraction ability of the model. This may be why
the ASR of ResNet34 is higher than that of ResNet50 and
ResNet18.
Poison ratio. As shown in Figure 5, we study the impact of the
poison ratio on the ASR. When the poisoning ratio is less than
0.2%, the poisoning ratio greatly impacts ASR, and increasing
the number of poisoned images enhances the ASR. When
the poisoning ratio reaches 0.2%, the ASR can exceed 60%,
validating that PADHASH is effective at a low poisoning ratio.
When the poisoning rate is higher than 0.2%, the ASR tends
to be stable. This is because ASR is mainly affected by other
factors such as gradient matching, base model, perturbation
constraints, etc.

Page 8 of 10Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9

Table XIII. The ASR under different threshold.

Hash Method Method
Metric Threshold

10% 20% 30% 40% 50% 60% 70% 80% 90%

CSQ
Baseline 52.0% 47.6% 44.4% 43.6% 42.8% 42.4% 41.6% 38.8% 34.8%

Ours 72.0% 69.2% 67.6% 65.6% 65.6% 64.0% 62.8% 60.4% 53.2%

DPN
Baseline 82.4% 81.4% 80.0% 79.4% 78.6% 78.2% 78.0% 77.4% 74.2%

Ours 82.8% 82.0% 81.4% 80.2% 79.6% 79.6% 78.6% 77.8% 74.2%

Fig. 6. Visualization results of clean and poisoned images on ImageNet100. The images in the top row are the clean images, and the images in the bottom
row are the corresponding poisoned images.

Hash codes length. To investigate the impact of hash codes
on the success rate of attacks, we study the attack success
rate under different hash code lengths. As shown in Table
XII, although the hash code length of the surrogate model
is different from the victim model, the ASR can exceed
60% in all settings, which demonstrates the transferability of
PADHASH across models with different hash codes lengths,
making PADHASH more practical in a real-world attack. In
addition, the reason why PADHASH has transferability in hash
codes is that the clean trigger images and the malicious images
are similar in the feature space, even though the hash code
lengths are different.
Metric threshold. We set a threshold to measure whether
an attack is successful. In the above experiment, we set the
threshold to 0.3, which means that the attack is considered
successful only when the target category images account for
more than 30% of the retrieved images. To eliminate the
impact of threshold selection on the experimental results, we
counted the attack success rates under different thresholds.

As shown in Table XIII, as the threshold increases, the
attack success rate of our method and the baseline decreases.
However, our method has a higher ASR under various thresh-
old selections, which demonstrates that the threshold selection
will not affect the conclusion that our method can improve the
ASR.

J. Visualization

Enhanced concealment translates to heightened difficulty in
detecting these poisoned data instances. Therefore, we present
a selection of sample poisoned images and clean images, as

depicted in Figure 6. Remarkably, these visual representations
reveal an exceedingly subtle distinction between the poisoned
and clean images sourced from the ImageNet100 dataset,
which demonstrates that the poisoned images generated by
PADHASH are also visually concealed. In addition, we empha-
size that in real-world attack scenarios, the poisoned images
we generate will be more visually invisible. Because the
images in the real world have a larger size, and the perturbation
search space is larger. Therefore, gradient matching can be
effectively accomplished within more constrained perturba-
tion bounds, contributing to the minimal visual divergence
observed.

VI. CONCLUSION

In this paper, we propose the first data poisoning attacks
against deep hashing models to explore their potential risks.
The attacker generates the poison images to compromise the
deep hashing models. When users query with clean trigger
images, they will obtain malicious images such as violent,
explicit, and private images. Our experiments in gray-box and
black-box scenarios validate that our proposed data poisoning
attacks against deep hashing models are effective and practical
on different datasets and models. In addition, we propose a
Strict Gradient-Matching method to generate poisoned images,
which has been demonstrated to enhance the attack success
rate. Our proposed attack method reveals the potential risks
of the deep hashing model. Therefore, we call on not only
paying attention to the performance of deep hashing models
but also to the security of deep hashing models.

Page 9 of 10 Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10

REFERENCES

[1] X. Li, J. Yang, and J. Ma, “Recent developments of content-based
image retrieval (cbir),” Neurocomputing, vol. 452, pp. 675–689, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0925231220319044

[2] H. Zhu, M. Long, J. Wang, and Y. Cao, “Deep hashing network for
efficient similarity retrieval,” in Proceedings of the AAAI conference on
Artificial Intelligence, vol. 30, no. 1, 2016.

[3] T.-T. Do, T. Hoang, D.-K. Le Tan, A.-D. Doan, and N.-M. Cheung,
“Compact hash code learning with binary deep neural network,” IEEE
Transactions on Multimedia, vol. 22, no. 4, pp. 992–1004, 2020.

[4] L. Fan, K. W. Ng, C. Ju, T. Zhang, and C. S. Chan, “Deep polarized
network for supervised learning of accurate binary hashing codes.” in
IJCAI, 2020, pp. 825–831.

[5] Y. Shi, X. Nie, M. Chen, L. Lian, and Y. Yin, “Deep hashing with
weighted spatial importance,” IEEE Transactions on Multimedia, vol. 23,
pp. 3778–3792, 2021.

[6] J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang,
“One loss for all: Deep hashing with a single cosine similarity based
learning objective,” Advances in Neural Information Processing Systems,
vol. 34, pp. 24 286–24 298, 2021.

[7] Y. Pei, Z. Wang, N. Li, H. Chen, B. Huang, and W. Tu, “Deep
hashing network with hybrid attention and adaptive weighting for image
retrieval,” IEEE Transactions on Multimedia, vol. 26, pp. 4961–4973,
2024.

[8] J. Bai, B. Chen, Y. Li, D. Wu, W. Guo, S.-T. Xia, and
E.-H. Yang, “Targeted attack for deep hashing based retrieval,”
in Computer Vision – ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part I. Berlin,
Heidelberg: Springer-Verlag, 2020, p. 618–634. [Online]. Available:
https://doi.org/10.1007/978-3-030-58452-8 36

[9] X. Wang, Z. Zhang, B. Wu, F. Shen, and G. Lu, “Prototype-supervised
adversarial network for targeted attack of deep hashing,” in 2021
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2021, pp. 16 352–16 361.

[10] X. Wang, Z. Zhang, G. Lu, and Y. Xu, “Targeted attack and
defense for deep hashing,” in Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2298–2302. [Online]. Available:
https://doi.org/10.1145/3404835.3463233

[11] S. Hu, Z. Zhou, Y. Zhang, L. Y. Zhang, Y. Zheng, Y. He, and H. Jin,
“Badhash: Invisible backdoor attacks against deep hashing with clean
label,” in Proceedings of the 30th ACM International Conference on
Multimedia, 2022, pp. 678–686.

[12] K. Gao, J. Bai, B. Chen, D. Wu, and S.-T. Xia, “Backdoor attack
on hash-based image retrieval via clean-label data poisoning,” in 34th
British Machine Vision Conference 2023, BMVC 2023, Aberdeen,
UK, November 20-24, 2023. BMVA, 2023. [Online]. Available:
https://papers.bmvc2023.org/0172.pdf

[13] R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan, “Supervised hashing for
image retrieval via image representation learning,” in Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, ser. AAAI’14.
AAAI Press, 2014, p. 2156–2162.

[14] Y. Li and J. van Gemert, “Deep unsupervised image hashing by
maximizing bit entropy,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 3, 2021, pp. 2002–2010.

[15] Z. Cao, M. Long, J. Wang, and P. S. Yu, “Hashnet: Deep learning to hash
by continuation,” in Proceedings of the IEEE international conference
on computer vision, 2017, pp. 5608–5617.

[16] L. Yuan, T. Wang, X. Zhang, F. E. Tay, Z. Jie, W. Liu, and J. Feng,
“Central similarity quantization for efficient image and video retrieval,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 3083–3092.

[17] H. Zhu and S. Gao, “Locality-constrained deep supervised hashing
for image retrieval,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, ser. IJCAI’17. AAAI Press, 2017,
p. 3567–3573.

[18] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[19] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[20] L. Struppek, D. Hintersdorf, D. Neider, and K. Kersting, “Learning to
break deep perceptual hashing: The use case neuralhash,” in Proceedings

of the 2022 ACM Conference on Fairness, Accountability, and Trans-
parency, 2022, pp. 58–69.

[21] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[22] R. Tang, M. Du, N. Liu, F. Yang, and X. Hu, “An embarrassingly simple
approach for trojan attack in deep neural networks,” in Proceedings
of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, 2020, pp. 218–228.

[23] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data
poisoning attacks,” Advances in neural information processing systems,
vol. 30, 2017.

[24] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongras-
samee, E. C. Lupu, and F. Roli, “Towards poisoning of deep learning
algorithms with back-gradient optimization,” in Proceedings of the 10th
ACM workshop on artificial intelligence and security, 2017, pp. 27–38.

[25] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in Proceedings of the 29th International Coference on
International Conference on Machine Learning, 2012, pp. 1467–1474.

[26] M. Fang, M. Sun, Q. Li, N. Z. Gong, J. Tian, and J. Liu, “Data poisoning
attacks and defenses to crowdsourcing systems,” in Proceedings of the
web conference 2021, 2021, pp. 969–980.

[27] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” Advances in neural information processing systems,
vol. 31, 2018.

[28] C. Zhu, W. R. Huang, H. Li, G. Taylor, C. Studer, and T. Goldstein,
“Transferable clean-label poisoning attacks on deep neural nets,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7614–7623.

[29] J. Geiping, L. H. Fowl, W. R. Huang, W. Czaja, G. Taylor,
M. M. 0001, and T. Goldstein, “Witches’ brew: Industrial scale data
poisoning via gradient matching,” in 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021. [Online]. Available: https:
//openreview.net/forum?id=01olnfLIbD

[30] H. Souri, L. Fowl, R. Chellappa, M. Goldblum, and T. Goldstein,
“Sleeper agent: Scalable hidden trigger backdoors for neural networks
trained from scratch,” Advances in Neural Information Processing
Systems, vol. 35, pp. 19 165–19 178, 2022.

[31] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009. [Online]. Available: https://api.semanticscholar.org/CorpusID:
18268744

[32] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “Imagenet large scale visual recognition challenge,” Int.
J. Comput. Vision, vol. 115, no. 3, p. 211–252, dec 2015. [Online].
Available: https://doi.org/10.1007/s11263-015-0816-y

[33] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

Page 10 of 10Transactions on Multimedia

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://www.sciencedirect.com/science/article/pii/S0925231220319044
https://www.sciencedirect.com/science/article/pii/S0925231220319044
https://doi.org/10.1007/978-3-030-58452-8_36
https://doi.org/10.1145/3404835.3463233
https://papers.bmvc2023.org/0172.pdf
https://openreview.net/forum?id=01olnfLIbD
https://openreview.net/forum?id=01olnfLIbD
https://api.semanticscholar.org/CorpusID:18268744
https://api.semanticscholar.org/CorpusID:18268744
https://doi.org/10.1007/s11263-015-0816-y

