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Abstract—Hidden wireless cameras pose significant privacy1

threats, necessitating effective detection and localization meth-2

ods. However, existing localization solutions often require im-3

practical activity spaces, expensive specialized devices, or pre-4

collected training data, limiting their practical deployment. To5

address these limitations, we introduce CAMLOPA, a training-6

free wireless camera localization framework that operates with7

minimal activity space constraints using low-cost, commercial-8

off-the-shelf (COTS) devices. CAMLOPA can achieve detection9

and localization in just 45 seconds of user activities with a10

Raspberry Pi board. During this short period, it analyzes the11

causal relationship between wireless traffic and user movement12

to detect the presence of a hidden camera. Upon detection,13

CAMLOPA utilizes a novel azimuth localization model based on14

wireless signal propagation path analysis for localization. This15

model leverages the time ratio of user paths crossing the First16

Fresnel Zone (FFZ) to determine the camera’s azimuth angle.17

Subsequently, CAMLOPA refines the localization by identifying18

the camera’s quadrant. We evaluate CAMLOPA across various19

devices and environments, demonstrating its effectiveness with20

a 95.37% detection accuracy for snooping cameras and an21

average localization error of 17.23°, under the significantly22

reduced activity space requirements and without the need for23

training. Our implementation, code, and demo are available at24

https://anonymous.4open.science/r/CamLoPA-Code-DFD5.25

1. Introduction26

In recent years, the proliferation of wireless camera27

devices for home and public security has grown significantly28

due to their convenience and flexibility in deployment. A29

study by Market Research Future in 2024 [1] projected the30

global wireless video surveillance and monitoring market31

to grow at a compound annual growth rate of 16.8% from32

2022 to 2030. However, the rapid adoption of wireless33

cameras has also raised substantial privacy concerns re-34

lated to unauthorized video recording and dissemination [2],35

[3], [4]. Users increasingly find themselves being illegally36

recorded by hidden cameras in various locations, from hotel37

rooms to short-term rentals. For instance, a 2019 survey [5]38

revealed that 58% of 2,023 Airbnb guests were concerned39

about the possibility of hidden cameras, with 11% reporting40

actual discoveries of such devices. In response to these41

privacy threats, various jurisdictions have proposed and en-42

acted legislation. For example, Delaware’s privacy laws now43

strictly prohibit the use of hidden cameras in private settings44

TABLE 1: Qualitative comparison with existing approaches.

Method Low
Cost

Low
User

Efforts

No
Training

Crowded
Room

LAPD [10] ✗ ✗ ✓ ✓
HeatDeCam [11] ✗ ✓ ✗ ✓

Lumos [12] ✓ ✗ ✗ ✗
SNOOPDOG [13] ✓ ✗ ✓ ✗

MotionCompass [14] ✓ ✓ ✓ ✗
SCamF [15] ✓ ✗ ✓ ✗

LocCams [16] ✓ ✓ ✗ ✓
CAMLOPA ✓ ✓ ✓ ✓

without the consent of the individuals being recorded, with 45

violations leading to severe penalties including jail time and 46

fines [6]. These legal measures underscore the urgency of 47

developing effective methods for detecting and localizing 48

hidden wireless cameras [7], [8], [9]. 49

Consequently, the problem of wireless camera detec- 50

tion and localization has attracted considerable research 51

attention [17], [18]. However, existing solutions often face 52

significant limitations that hinder their practical deployment. 53

Many approaches can detect wireless cameras but cannot 54

locate them [18], [19], [20], [21], [22]. Those capable of 55

localization often impose complex requirements. Specifi- 56

cally, methods relying on lens reflection [10], [23], [24] 57

or electromagnetic/thermal emissions [11], [25], [26] are 58

typically cumbersome, requiring user expertise and exam- 59

ination of every corner of the room, making them difficult 60

to use. Moreover, electromagnetic/thermal-based methods 61

often necessitate costly specialized equipment. To address 62

these shortcomings, recent research has focused on analyz- 63

ing the WiFi traffic or physical layer information to locate 64

wireless cameras. These methods usually require users to 65

move along the edges of the room [12], [15], [27] or perform 66

perturbations at different positions and orientations [13], 67

[14]. The camera’s location is determined by assessing the 68

RSSI (Received Signal Strength Indicator) or traffic varia- 69

tions of target devices. These approaches typically necessi- 70

tate the room to be nearly empty to allow user movement 71

to different locations, which is not feasible in real-world 72

scenarios. They are also time-consuming, requiring 10-30 73

minutes for camera localization and constant user movement 74

or position adjustments. In a recent work [16], differences 75

in WiFi Channel State Information (CSI) under Line-of- 76

Sight (LOS) and None-Line-of-Sight (NLOS) conditions are 77

utilized for the coarse localization of wireless cameras. This 78

approach requires minimal user effort but its localization 79

resolution is limited to 45o, still taking a lot of time to 80

https://anonymous.4open.science/r/CamLoPA-Code-DFD5


Figure 1: Different wireless signal path losses when crossing
the First Fresnel Zone (FFZ) with different path lengthes.

search for devices. Additionally, it requires pre-collected81

training data, and the deep learning model used has poor82

robustness against changes in the environment and devices.83

(More background please refer to Appendix A)84

In this paper, we introduce CAMLOPA, a fast and robust85

wireless camera detection and localization framework us-86

ing low-cost commercial-off-the-shelf (COTS) devices. As87

shown in Table 1, CAMLOPA requires less activity space88

and user effort compared to previous studies. Our framework89

is inspired by the relationship between obstructions in the90

propagation path of wireless signals and the resulting signal91

attenuation. Specifically, when a large obstacle is located92

within the First Fresnel Zone (FFZ) between a WiFi trans-93

mitter and receiver, the transmitted signal will experience94

significant attenuation due to diffraction, as defined by95

Huygen’s principle [28] and Fresnel-Kirchhoff diffraction96

parameters [29]. As illustrated in Figure 1, when a person97

crosses the FFZ, there is a drastic change in the wireless98

signal path loss, and the duration of this significant variation99

is related to the length of the path traversed through the100

FFZ. Since the FFZ forms an ellipse with the two devices101

as its foci, given a fixed distance between the two devices,102

the length of the path through the FFZ can be mapped to103

the angle of the walk relative to the LOS path (azimuth).104

CAMLOPA utilizes this relationship to achieve azimuth angle105

localization of the wireless cameras.106

The technical crux of CAMLOPA is to address the over-107

complexity and lack of robustness issues in previous ap-108

proaches. However, there are still two significant challenges:109

1) Relationship Mapping Under Unknown User Speed:110

By analyzing the durations of significant wireless signal111

fluctuations, we can determine the time it takes for a user to112

traverse the FFZ. To ascertain the path length through the113

FFZ, we also need to know the user’s speed (The challenge114

of constant user speed is discussed in Section 7.). In real-115

world scenarios, considering cost and complexity, users typ-116

ically do not have specialized equipment to measure walking117

speed or have robots to substitute for user to move. Thus,118

the user’s speed remains unknown, and we cannot determine119

the path length.120

Q1: How can we establish a mapping relationship
between the traversal time and the azimuth angle of
the hidden wireless camera without knowing the user’s
walking speed?

121

2) Errors Control Under Variable Distance and Body122

Size: In practical scenarios, the distance between the hidden 123

wireless camera and the CAMLOPA device is also unknown, 124

and the user’s body size is variable. The user’s body size 125

significantly affects the duration of signal variations, as the 126

signal is impacted from the moment the user enters the 127

edge of the FFZ until he/she completely exits from it. Pre- 128

defining these two values can introduce substantial errors in 129

the aforementioned mapping relationship. 130

Q2: How can we minimize the impacts of biased
parameters and keep the errors within an acceptable
range?

131

To overcome the above challenges, we propose a scheme 132

called the orthogonal ratio. This scheme replaces the need 133

to measure the distance of a single path through the FFZ 134

with the time ratio of two orthogonal paths crossing the 135

FFZ to establish a mapping relationship with the azimuth 136

angle. Specifically, we set two orthogonal walking paths 137

that both pass through the CAMLOPA device, which is 138

typically easy to achieve in real-world environments. We 139

then calculate the time taken for each path to traverse the 140

FFZ. Since the path length is the product of the time and 141

speed, using the time ratio of the two paths eliminates the 142

influence of the speed. Next, we develop a mapping model 143

between the orthogonal ratio and the angle between the first 144

path and LOS (azimuth) by WiFi propagation path analysis. 145

By obtaining the orthogonal ratio in real environments, the 146

azimuth angle of the wireless camera can be derived from 147

the model. Besides, the orthogonal ratio remarkably reduces 148

the impact of biased parameters such as variable distances 149

and body sizes due to the division operation. 150

CAMLOPA operates in three stages and requires only 151

45 seconds of user movement to detect and locate a hid- 152

den wireless camera. In the first stage (0-15s), the system 153

analyzes the relationship between the data stream uploaded 154

by the camera and user activity for snooping camera de- 155

tection. The encoding method of the video stream causes 156

an increase in data volume when there is movement within 157

the monitored area. Therefore, CAMLOPA first prompts the 158

user to leave the room and collects traffic data of 15 seconds. 159

By examining the causal relationship between the user’s exit 160

and the data stream, the system identifies whether a wireless 161

camera is monitoring the current area. In the next stage 162

(15-35s), the user walks along two orthogonal paths that 163

both pass through the CAMLOPA equipment. The system 164

calculates the orthogonal ratio of these two paths and deter- 165

mines the azimuth of the wireless camera using the azimuth 166

model. This model only provides an angle within the range 167

of 0-90° (e.g., for 45° and 135°, CAMLOPA reports 45° for 168

both cases). To address this, we further design a scheme 169

to determine the quadrant in which the camera is located. 170

In the final stage (35-45s), the system prompts the user to 171

walk along a path that coincides with the first path but does 172

not traverse the entire FFZ. By analyzing whether the user’s 173

initial position blocks the LOS, the quadrant determination 174

scheme identifies the quadrant in which the wireless camera 175

is located, achieving the final localization. We implement a 176

prototype of CAMLOPA on a Raspberry Pi device, which 177



users can connect to using SSH tools on their smartphone178

to receive system prompts and display the results.179

In summary, we make the following key contributions:180

• We propose CAMLOPA, the first hidden wireless camera181

detection and localization framework based on the diffrac-182

tion phenomenon during wireless signal propagation. This183

scheme is implemented using low-cost COTS devices.184

It has small activity space requirements, and does not185

require model training.186

• We introduce a wireless device azimuth localization model187

and a quadrant determination method based on wireless188

signal propagation path analysis. The model is designed189

on the principle that diffraction causes significant atten-190

uation of wireless signals. By combining the model with191

the quadrant determination method, we can achieve fast192

and training-free device localization.193

• We evaluate CAMLOPA across various devices and en-194

vironments. Experiment results show that CAMLOPA195

achieves the detection accuracy of 95.37% and average196

localization error of 17.23° for snooping wireless cameras.197

2. Channel State Information (CSI)198

WiFi CSI [30], [31], [32], [33], [34], [35] describes199

various effects that a WiFi signal undergoes during propa-200

gation, including multipath effects, attenuation, phase shift,201

and more. This process of influence can be represented as202

follows [36], [37]:203

Y = H ·X +N, (1)

where Y and X are the received and transmitted signals,204

respectively. N is the additive white Gaussian noise, and205

H is a complex matrix representing CSI. And this complex206

matrix can be expressed as follows:207

H(f) = |H(f)|ejθ(f), (2)

where H(f) is the channel response at frequency f , |H(f)|208

is the magnitude of the CSI, representing the variation in209

signal strength, and θ(f) is the phase shift of the CSI,210

representing the variation in signal phase. The magnitude211

of the CSI can be used to characterize signal attenuation.212

The received CSI is a superposition of signals of all the213

propagation paths, and its Channel Frequency Response214

(CFR) can be represented as [38]:215

H(f, t) =
∑
m∈Φ

am(f, t)e−j2π
dm(t)

λ , (3)

where f and t represent center frequency and time stamp,216

respectively, and m is the multi-path component. am(f, t)217

and dm(t) denote the complex attenuation and propagation218

length of the mth multi-path component, respectively. Φ219

denotes the set of multi-path components and λ is the signal220

wavelength. When there are changes in only one path, the221

CSI can be used to approximate the attenuation occurring222

on that path. Specifically, paths with no changes and those223

with changes can be categorized as static and dynamic paths 224

as follows [39]: 225

H(f, t) = Hs(f, t) +Hd(f, t)

=
∑

ms∈Φs

ams
(f, t)e−j2π

dms (t)

λ

+
∑

md∈Φd

amd
(f, t)e−j2π

dmd
(t)

λ ,

(4)

where Hs(f, t) and Hd(f, t) denote the static and dynamic 226

components, respectively. Φs represents the set of static 227

paths, e.g., reflected off the walls and furniture and static 228

body parts, while Φd denotes the set of dynamic paths, e.g., 229

reflected off the moving human. When there is only one 230

person moving in the room, CSI can be used to characterize 231

the signal attenuation and multipath effects caused by this 232

person’s movement. 233

Next, we briefly explain the Fresnel zone model, which 234

is widely used to analyze the diffraction and reflection 235

effects of wireless and light signals along their propagation 236

path. This model helps in understanding how signal strength 237

varies with distance and obstacles. The Fresnel zones can be 238

described as a series of concentric ellipses with the wireless 239

signal transmitter and receiver as the focal points [40] (see 240

the Appendix B). 241

|TxQn|+ |QnRx| − |TxRx| = nλ/2, (5)

where Qn is a point at the boundary of the nth Fresnel 242

zone, and Tx and Rx represent the transmitter and re- 243

ceiver, respectively. Since the phase difference of waves 244

within the First Fresnel Zone (FFZ) is relatively small, most 245

of the energy is concentrated in this region. In wireless 246

communication and wave propagation, the energy within 247

the FFZ typically accounts for about 60% to 70% of the 248

total transmitted energy. Obstacles outside the FFZ primarily 249

cause signal reflection [41], [42], [43]. The attenuation due 250

to reflection is minimal, and the total signal energy affected 251

by obstacles outside the FFZ is relatively small. As a result, 252

when obstacles moves in the outside of the FFZ, the total 253

received signal energy does not change significantly. Instead, 254

the movement mainly causes multipath effects, leading to 255

phase changes in the CSI. Conversely, obstacles within the 256

FFZ mainly cause diffraction [29], [40]. The attenuation due 257

to diffraction is substantial, and since a significant amount 258

of signal energy is transmitted within the FFZ, the received 259

signal experiences substantial attenuation, which can be 260

clearly characterized by the magnitude of the CSI. 261

In practical systems, we can use open-source tools such 262

as csitool [44], picosense [45], and nexmon csi [46], [47] to 263

obtain CSI from various network cards, including Intel 5300, 264

AX210/AX200, and bcm43455c0 (Raspberry Pi B3+/B4). 265

The actual size of the extracted CSI matrix depends on 266

the number of antennas and subcarriers [48], [49], and the 267

obtained CSI is a 4-dimensional tensor H ∈ CN×M×K×T, 268

and M, K, and T represent the number of receive antennas, 269

transmit antennas, subcarriers, and packets, respectively. 270
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Figure 2: Overview of CAMLOPA. CAMLOPA is implemented using a low-cost Raspberry Pi, which can connect via SSH
to the user’s phone for prompts and notifications. The operation of CAMLOPA is divided into two phases: wireless camera
detection and localization. The detection stage determines whether a wireless camera is monitoring the current area, while
the localization stage precisely locates the identified camera.

3. Overview271

3.1. Threat Model272

Our work focuses on a scenario where an attacker places273

a hidden wireless camera in a room to monitor the user274

in real-time. This scenario aligns with current state-of-the-275

art methods [12], [15], [16], [50], [51] for detecting and276

locating hidden cameras. It is also supported by several277

real-world cases [52], [53], in which attackers have been278

caught live-streaming users in private spaces—an effective279

and convenient method for gathering private information.280

The adversary covertly deploys a hidden camera within the281

victim’s room, communicating with it via encrypted wireless282

communication. We focus on WiFi as the communication283

channel in this paper, given its widespread use for remote284

monitoring in commercial devices. Below, we describe the285

real-world settings for both the attacker and the user.286

Attacker: The attacker could be the host or a previous guest287

intending to monitor users in the room.288

• The attacker can fully control the room before the user289

checks in, such as changing the environment and installing290

hidden wireless cameras.291

• The attacker uses COTS camera devices to spy on users292

and can control the cameras through an app. Similar to293

previous studies [12], [13], [15], [54], [55], we assume the294

attacker does not alter the firmware, network protocols or295

wireless transmission behaviors of these camera devices,296

as these tasks generally require a high level of expertise.297

• The attacker has complete control over the WiFi network298

to which the hidden wireless cameras connect. He can299

configure the WiFi network’s wireless channels, encryp-300

tion methods, and access modes.301

User: The user’s requirement is to detect and locate hidden302

wireless cameras within the room.303

• The user can access the physical space to search and304

move around. But in a real environment, his movement is305

limited and obstructed by the furniture, making it difficult306

to meet the activity space requirements of most previous307

studies [12], [13], [14], [15].308

• The user does not have any knowledge of the hidden 309

wireless cameras. He is unaware of the WiFi network 310

being used, the channel of the WiFi network, or the 311

cameras’ locations. However, the user has control over 312

the CAMLOPA device, including its placement and the 313

configuration of its network connection. 314

• The user does not have control over the WiFi network to 315

which the wireless cameras are connected. However, he 316

can use existing tools (e.g., tcpdump, Wireshark) to sniff 317

WiFi 802.11 packets broadcast in the air. The user carries 318

no additional measuring tools except for a Raspberry Pi 319

equipped with CAMLOPA. 320

3.2. Workflow of CAMLOPA 321

CAMLOPA requires the user to perform three walks (45 322

seconds) to detect and locate the hidden wireless camera 323

according to the prompts of CAMLOPA. It then provides 324

feedback with the estimated azimuth angle of the hidden 325

wireless camera. The overall structure of CAMLOPA is 326

shown in Figure 2 and it operates in two phases: 327

Hidden Wireless Camera Detection. CAMLOPA first scans 328

the surrounding WiFi networks and captures packets on all 329

active 802.11 wireless channels for analysis. If it detects 330

a device that is continuously uploading data, it identifies 331

this device as suspicious and forwards its MAC address and 332

channel index to the snooping camera detection module. The 333

snooping camera detection module will prompt the user to 334

leave the room and sniff packets from this channel for 15 335

seconds. It then analyzes the upload traffic of the suspicious 336

device according to the MAC address. If the traffic pattern 337

matches the user’s departure phase, the detection module 338

will report that the device is monitoring the current area. 339

Next, the module will forward the device’s MAC address 340

and channel index to the following localization phase. 341

Hidden Wireless Camera Localization. Upon receiving the 342

MAC address of the snooping wireless camera and the WiFi 343

channel of the connected Access Point (AP), CAMLOPA 344

prompts the user to walk along two orthogonal paths (see 345

Figure 6) cross the CAMLOPA device, such as a Raspberry 346



Pi board. Specifically, the device sniffs the WiFi packets347

transmitted from the target MAC on the specified channel348

over 10 seconds for each path, extracting CSI to calculate the349

orthogonal ratio and determine the azimuth angle using the350

proposed azimuth localization model. These paths intersect351

in a T-shape, with the intersection point being the location352

of the CAMLOPA device. After calculating the azimuth353

angle, CAMLOPA prompts the user to walk along a path354

coinciding with the first path but starting in front of the355

CAMLOPA device, collecting 10 seconds of CSI. Next, using356

the quadrant determination model, CAMLOPA calculates the357

quadrant in which the target device is located to obtain the358

final azimuth angle of the hidden wireless camera.359

4. Wireless Camera Detection360

CAMLOPA detects the presence of snooping wireless361

cameras in the environment through wireless traffic analysis362

by: (i) searching for suspicious devices, and (ii) detecting363

snooping wireless cameras.364

4.1. Searching for Suspicious Devices365

In real-world environments, there are usually many wire-366

less networks and devices connected to WiFi around the367

user. Analyzing all devices to detect cameras monitoring368

the area is highly inefficient. Therefore, CAMLOPA first369

identifies suspicious devices to narrow down the detection370

scope. Video stream packets are typically large and stable,371

and surveillance cameras continuously and frequently up-372

load data. CAMLOPA starts by scanning the surrounding373

WiFi networks to detect all APs, even those with Hidden374

Service Set Identifiers (SSIDs). According to [56], CAM-375

LOPA excludes APs that do not meet the minimum RSSI376

requirements for video streaming, namely, below -67 dBm377

(please refer to Appendix C). In practice, the requirements378

for RSSI slightly relaxed to avoid missed detections. It then379

sequentially scans the channels of the remaining APs, sniff-380

ing and capturing 802.11 packets for 5 seconds to determine381

if any devices are continuously uploading data.382

For the captured 802.11 packets, CAMLOPA first classi-383

fies them by source MAC address into different end devices.384

Next, it filters out Management-Type and Control-Type385

frames, leaving only Data-Type frames for further analysis,386

as application layer data is encapsulated within Data-Type387

frames [57]. After protocol filtering, CAMLOPA aggregates388

all Data-Type frames corresponding to each device and389

calculates the average size of the payload portion. Finally,390

CAMLOPA determines the presence of any suspicious de-391

vices as follows:392

Smac =

{
true if s̄mac > Ts&l > Tl&mac ̸= map,

false else .
(6)

Here, Smac represents the determination of whether the393

device with MAC address mac is suspicious. s̄mac, Ts, l,394

map, and Tl denote the average size of all packet payloads,395

the size threshold, the count of packets, the MAC address396

of APs, and the count threshold, respectively. This equation 397

indicates that if a device sends a large number of packets 398

within 5 seconds and the average packet length is long, it 399

is likely uploading a video stream. After identifying sus- 400

picious devices, CAMLOPA forwards their MAC addresses 401

and 802.11 channel index to the snooping camera detection 402

module. This module then sequentially assesses the risk of 403

each device to determine whether they are monitoring the 404

current area. 405

4.2. Detecting Snooping Cameras 406

Before uploading video streams, cameras typically apply 407

encoding to compress the data and reduce the upload vol- 408

ume. Most video compression standards, such as H.264 [58] 409

and H.265 [59], achieve high compression rates through 410

inter-frame prediction. Specifically, standard video compres- 411

sion algorithms use three types of frames to compress video: 412

I (Intra-coded picture) frames, P (Predicted picture) frames 413

and B (Bi-directionally predicted picture) frames 414

When there is any activity in the area monitored by 415

the wireless camera, the camera traffic increases due to 416

the higher number of P and B frames that need to be 417

transmitted [13], [15]. Conversely, if the scene transitions to 418

a stationary one, the number of disturbed pixels decreases, 419

reducing the camera traffic. If a person first moves and then 420

remains still within the camera’s monitored area, it will 421

result in a unique camera traffic pattern (traffic decreasing) 422

that corresponds to the user’s motion. This causal effect 423

can be used to detect whether a hidden wireless camera 424

is snooping on the current area. CAMLOPA leverages this 425

causal relationship to detect snooping cameras. Specifically, 426

CAMLOPA prompts the user to leave the room within 15 427

seconds. It then calculates the data throughput of each 428

suspicious device per second and checks for traffic patterns 429

where the throughput is initially high and then decreases. 430

If such a pattern is detected, the device is identified as a 431

snooping camera, and its risk level is determined based on 432

the ratio of the data throughput in the first half to that in 433

the second half. A sample of the data throughputs during 434

the user’s exit from the room is shown in Figure 3. 435

Upon detecting a snooping camera, CAMLOPA forwards 436

the camera’s MAC address and associated WiFi channel 437

index to the wireless camera localization module. It then 438

initiates the localization process for the detected camera. 439

5. Wireless Camera Localization 440

CAMLOPA localizes snooping cameras in two stages: (i) 441

azimuth localization and (ii) quadrant determination. 442

5.1. Diffraction Attenuation in Wireless Signal 443

Propagation 444

Diffraction allows radio signals to propagate around 445

the curved surface of the earth, beyond the horizon, and 446

behind obstacles [40]. This phenomenon can be explained 447
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Figure 3: Throughput during the user’s exit from the room.

using Huygen’s principle, which states that all points on448

a wavefront can be considered as point sources generating449

secondary wavelets. These secondary wavelets are combined450

in the direction of propagation to form a new wavefront.451

Diffraction occurs due to the propagation of these secondary452

wavelets into shadowed regions. Empirical studies [41],453

[43], [60] suggest that when an obstacle is within the454

FFZ, it primarily causes the diffraction of wireless signals.455

Conversely, when the obstacle is outside the FFZ, it mainly456

causes the reflection of signals.457

In Figure 4, assuming the height of a point Q from the458

LOS path is h, and its projection onto the LOS path has459

distances d1 and d2 from Tx and Rx, respectively, the path460

difference between the signal propagating through this point461

and the LOS path ∆d can be expressed as [40]:462

∆d ≈ h2

2

d1 + d2
d1d2

. (7)

The corresponding phase difference is:463

ϕ =
2πd

λ
=

πh2

λ

d1 + d2
d1d2

. (8)

Equation 8 can typically be expressed using the Fresnel-464

Kirchoff diffraction parameter v as follows:465

ϕ =
π

2
v2. (9)

The Fresnel-Kirchoff diffraction parameter v can be repre-466

sented as:467

v = h

√
2(d1 + d2)

λd1d2
. (10)

The Fresnel-Kirchoff diffraction parameter originates from468

the combination of the Fresnel approximation and Kirch-469

hoff’s diffraction theory. This parameter is used to describe470

the diffraction effect that occurs when a wave encounters an471

obstacle or aperture. The magnitude of v is related to the472

significance of the diffraction effect. A smaller v indicates473

a smaller obstacle size or greater distance, resulting in a474

less significant diffraction effect. Conversely, a larger v475

indicates a more pronounced diffraction effect, where the476

wave experiences noticeable diffraction when encountering477

an obstacle and continues to propagate around it. The radius478
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Figure 4: A moving cylinder across the FFZ.

(The perpendicular distance from Q to the LOS path.) of the 479

FFZ can be expressed as [40]: 480

r1 =

√
λd1d2
d1 + d2

. (11)

Thus, the Fresnel-Kirchoff diffraction parameter can be 481

represented as: 482

v = h

√
2(d1 + d2)

λd1d2
= h

√
2

r1
. (12)

In wireless communication systems, only a portion of 483

the signal’s energy can diffract around an obstacle, allowing 484

only part of the blocked energy to reach the receiver. There- 485

fore, when an obstacle obstructs part of the Fresnel zone, 486

the received energy is the vector sum of the contributions 487

from all the unobstructed portions of the Fresnel zone. If an 488

infinitely long object is positioned at a distance h from the 489

LOS path, the ratio of the electric field strength Ed affected 490

by diffraction to the unobstructed electric field strength Eo 491

is given by [40]: 492

Ed

Eo
= F (v) =

1 + j

2

∫ ∞

v

exp(
−jπt2

2
)dt, (13)

where F (v) is the complex Fresnel integral. 493

In practical scenarios, a human body can be approxi- 494

mated as a cylinder to analyze the signal attenuation caused 495

by diffraction along the propagation path. As shown in 496

Figure 4, both ends of the cylinder induce diffraction effects, 497

where hfront and hback represent the distances from the front 498

and back edges of the cylinder to the LOS path, respectively. 499

The signal attenuation caused by diffraction at the front and 500

back edges can be expressed as: 501

F (vfront) =
1 + j

2

∫ ∞

vfront

exp(
−jπt2

2
)dt, (14)

502

F (vback) =
1 + j

2

∫ vback

−∞
exp(

−jπt2

2
)dt. (15)

The diffraction gain due to the presence of a cylinder is 503

given by: 504

Gd(dB) = 20log|F (vfront) + F (vback)|. (16)
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Figure 5: Diffraction gain variation corresponding to Fig-
ure 4.

To intuitively demonstrate the diffraction attenuation505

caused by obstruction, we use the example of a cylinder with506

a radius equal to the FFZ radius. To simplify the setup, we507

assume the cylinder crosses the FFZ vertically (as shown in508

Figure 4) and introduce Fresnel clearance u [60] to indicate509

the percentage of crossing:510

u =
h

r1
, (17)

511

v = h

√
2(d1 + d2)

λd1d2
= h

√
2

r1
=

√
2u. (18)

The diffraction gain during the cylinder’s traversal of the512

FFZ is shown in Figure 5. It is obvious that the cylinder513

causes significant signal attenuation due to diffraction from514

the moment it touches the FFZ (ufront = −1) until it515

completely exits the FFZ (ufront = 2).516

5.2. Azimuth Localization517

Section 5.1 highlights that the period of significant wire-518

less signal attenuation can be used to determine the time519

taken for an obstacle (the user) to cross the first Fresnel520

zone (FFZ). Below, we list several key points:521

• The location of the CAMLOPA device is known.522

• As discussed in Section 2, CSI can represent the atten-523

uation of WiFi signals.524

• When the positions of transmitter (camera) and receiver525

(CAMLOPA) are fixed, and the obstacle (user) walks in526

a straight line past the receiver and through the FFZ,527

the length of the path traversing the FFZ is related to528

the angle between the walking path and LOS (azimuth).529

Based on the above key points, it is evident that if the user’s530

walking speed and the distance between the transmitter531

and receiver are known, the azimuth angle of the wireless532

camera can be calculated using the time of significant CSI533

attenuation. Furthermore, an important corollary is derived:534

Corollary: In an indoor environment, for a camera to
effectively monitor an area of interest, its LOS must
remain unobstructed. Therefore, if the azimuth of the
wireless camera is known, the camera is likely located
at the first obstacle encountered along that angle.

535

CamLoPA

Wireless Camera

Path1

Path2

θ

Lf1

Lf2

L2

Figure 6: The illustration of azimuth localization.

From the corollary, we know that in an indoor envi- 536

ronment, effective localization of a wireless camera can be 537

achieved by knowing the azimuth angle information, even 538

without distance information. However, some challenges 539

arise in practice: 540

• Users’ walking speeds are difficult to obtain. 541

• Some users may be unaware of their own sizes. 542

• The distance between the CAMLOPA device and the 543

wireless camera is unknown. 544

CAMLOPA introduces the orthogonal ratio to address 545

the challenge of obtaining crucial parameters (e.g., speed 546

and distance). As shown in Figure 6, CAMLOPA prompts 547

the user to walk along two orthogonal paths, both of which 548

pass by the CAMLOPA device. In real-world environments, 549

finding such paths is usually feasible. CAMLOPA then cal- 550

culates the time it takes to traverse the FFZ along each 551

path (represented by the red lines) based on the periods 552

of significant CSI attenuation and computes their ratio. The 553

azimuth angle θ (the angle of the Path 1 relative to the LOS 554

path) is estimated using a model that relates this ratio to the 555

azimuth. The orthogonal ratio-based method eliminates the 556

impact of walking speed and reduces errors due to unknown 557

distances between devices and the user’s size. 558

Next, we provide a detailed explanation of the azimuth 559

localization model based on the orthogonal ratio. As ex- 560

plained in Section 5.1, the duration of significant CSI atten- 561

uation corresponds to the time it takes for the user to traverse 562

from entering to exiting the FFZ. Therefore, for Path 1, the 563

walking distance that causes significant attenuation can be 564

calculated as follows: 565

L1 = Bs + Lf , (19)

where Bs and Lf represent the user’s body size and the 566

length of Path 1 within the FFZ (red line in Figure 6). 567

Lf can be further divided into Lf1, the distance from the 568

FFZ boundary to CAMLOPA, and Lf2, the distance from 569

CAMLOPA to the FFZ boundary. Combined with Equation 5, 570

we have the following equations: 571

Lf1 +
√

d2 + L2
f1 − 2dLf1 cos θ − d =

λ

2
, (20)

572

Lf2 +
√

d2 + L2
f2 − 2dLf1 cos(π − θ)− d =

λ

2
, (21)



where d is the distance between Tx and Rx. Treating Lf1573

and Lf2 as unknown, they can be solved as follows:574

Lf1 =
λ2 + 4dλ

4(2d+ λ− 2d cos θ)
, (22)

575

Lf2 =
λ2 + 4dλ

4(2d+ λ+ 2d cos θ)
. (23)

Path 2 does not cross the entire FFZ, and thus the length576

of its path that perturbs the CSI is only the distance from577

CAMLOPA to the FFZ boundary:578

L2 +

√
d2 + L2

2 − 2dL2 cos(
π

2
− θ) =

λ

2
. (24)

Treating L2 as unknown, it can be solved as follows:579

L2 =
λ2 + 4dλ

4(2d+ λ− 2d sin θ)
. (25)

The orthogonal ratio is calculated as:580

Ro =
T1

T2
=

T1vs
T2vs

=
L1

L2
=

4Bs(2d+ λ− 2d sin θ)

λ2 + 4dλ

+
4(2d+ λ− 2d sin θ)

4(2d+ λ− 2d cos θ)
+

4(2d+ λ− 2d sin θ)

4(2d+ λ− 2d cos θ)

=
4Bs(2d+ λ− 2d sin θ)

λ2 + 4dλ
+

8(2d+ λ)(2d+ λ− 2d sin θ)

(2d+ λ)2 − (2d cos θ)2
,

(26)
where T1 and T2 are the periods during which the user’s581

movement along Paths 1 and 2 causes significant CSI at-582

tenuation, and vs is the user’s walking speed. By taking the583

ratio, the influence of the speed can be eliminated. After584

obtaining Ro, the Newton-Raphson method can be used to585

solve for θ.586

Next, we analyze the errors introduced by setting fixed587

values of Bs and d. We conducted an analysis of the L1-588

θ and Ro-θ relationship models separately. Figure 7 shows589

the variations of L1 and Ro relative to the azimuth angle590

θ for Bs = 0.15, 0.25, and 0.45, which are reasonable591

based on common sense. It can be observed that the error592

caused by Bs is more pronounced near θ = 90o. The593

error in the L1-based method due to changes in Bs is594

significant, while the Ro-based method effectively mitigates595

the error caused by the variations of Bs. Figure 8 illustrates596

the variations of L1 and Ro relative to the azimuth angle597

θ for d = 1, 3, and 6, which are plausible ranges for598

indoor wireless camera deployment. It can be observed that599

the error caused by d is more significant around 0/180o.600

Compared to the L1-based approach (with an theoretical601

maximum error approaching 20o), the theoretical maximum602

error of Ro (15o) is more advantageous. Furthermore, the603

variations in the walking speed due to different users’ habits604

can introduce greater errors in the L1-based scheme. It is605

clear that the orthogonal ratio-based scheme employed by606

CAMLOPA nearly eliminates the bias caused by unknown607

speeds and user body sizes while minimizing the errors608

due to the unknown distance between the transmitter and609

receiver. Even under the condition of maximum theoretical610

error, the localization results remain highly practical in real611

indoor environments due to the limited number of potential 612

hiding spots for wireless cameras. Due to the superiority of 613

the orthogonal ratio strategy, in this paper, CAMLOPA sets 614

d = 3 and Bs = 0.25 as fixed values according to realistic 615

scenarios, and users walk for 10 seconds along each path. 616

5.3. Quadrant Determination 617

From Figures 7 and 8 (i.e., Ro leading to two possible 618

values of θ), we can also observe that the predicted θ using 619

Ro has two possible values, making it impossible to deter- 620

mine whether the camera is in the first or second quadrant. 621

Therefore, further quadrant determination is necessary. 622

To achieve quadrant determination, CAMLOPA prompts 623

the user to walk again in the same direction as Path 1 for 10 624

seconds, but starting from a position in front of the CAM- 625

LOPA device. The quadrant can then be determined based 626

on changes in the CSI. The rationale is that if the wireless 627

camera is located in the first quadrant, the user standing 628

at the starting position will block the LOS signal between 629

the two devices, causing significant signal variations due to 630

the diffraction effect when the user moves. Conversely, if the 631

wireless camera is behind the user, the user’s movement will 632

only cause signal fluctuations due to reflection. Specifically, 633

CAMLOPA determines the quadrant as follows: 634

Qmac =

{
2 if max(CSI3)

min(CSI3)
< Tq ∗ max(CSI1)

min(CSI1)
,

1 else .
(27)

Equation 27 means that if the extent of the CSI fluctuation 635

caused by Path 3 is less than Tq times the extent of the CSI 636

fluctuation caused by Path 1, the camera is determined to be 637

in the second quadrant; otherwise, it is in the first quadrant. 638

Since movement within the range of 180-360o does not 639

cross the LOS, CAMLOPA can only locate devices within 640

the range of 0-180o. However, in real-world environments, 641

the user’s available space is usually near walls, thus a 642

single measurement by CAMLOPA remains highly useful. If 643

the condition of moving near walls is not met, CAMLOPA 644

requires two measurements. 645

6. Implementation and Evaluation 646

We implemented CAMLOPA in multiple rooms and di- 647

verse hidden wireless cameras, and this section presents the 648

implementation details of CAMLOPA. 649

6.1. Prototype 650

The prototype of CAMLOPA is shown in Figure 9. The 651

Raspberry Pi uses its built-in wireless NIC with the nexmon 652

tool [46] to modify the kernel for CSI extraction. However, 653

the modified driver for extract CSI cannot sniff 802.11 654

packets, therefore we set up an external network card (NIC1) 655

with monitoring capabilities to sniff 802.11 packets. NIC2 656

is a standard wireless network card used for communication 657

between the CAMLOPA device and the user’s smartphone. 658

The user’s smartphone can receive prompts and localization 659



(a) The variations of L1. (b) The variations of Ro.

Figure 7: The variations of L1 and Ro relative to θ with Bs changes.

(a) The variations of L1. (b) The variations of Ro.

Figure 8: The variations of L1 and Ro relative to θ with d changes.

Figure 9: The prototype of CAMLOPA.

results from CAMLOPA via SSH tools. More details please660

refer to Appendix E.661

6.2. Experimental Setup662

We evaluated the performance of CAMLOPA using seven663

different wireless cameras (details provided in Appendix D).664

All devices were purchased from online shopping platforms,665

and the cameras were connected to a 2.4GHz WiFi net-666

work. The experiments were conducted in a real residential667

setting, spanning three different rooms, each containing668

various obstacles such as furniture and household items.669

The experimental environment included numerous WiFi de-670

vices and APs operating both within and around the test671

house. Since the experiments were conducted in actual home672

environments over an extended period, only the residents673

participated to ensure privacy. The validation experiments 674

were carried out over a total duration of two months. 675

The layout of three rooms are shown in Figure 10, and 676

the location of cameras please refer to Appdedix D. Rooms 677

1 and 2 (Figures 10a and 10b) are bedrooms, while room 3 678

is a living room (Figure 10c). In real environments, private 679

spaces like bedrooms and hotel rooms have limited activity 680

space, restricting the feasibility of previous methods that 681

rely on extensive indoor scanning. As shown in Figure 13, 682

the cameras we used have an average QoS data packet 683

length ranging from 369 to 1050 bytes during video stream 684

uploads, with upload speeds ranging from 35 to 130 packets 685

per second. Therefore, in our experiments, Ts and Tl are set 686

to 300 bytes and 150 packets (30 packets * 5 seconds), 687

respectively. The Tq for quadrant localization is empirically 688

set to 0.6. 689

6.3. CSI Analysis and Algorithm Implementation 690

In this section, we analyze the relationship between the 691

CSI influenced by user activity and the azimuth of the 692

camera. Furthermore, we elaborate on the design of the 693

algorithm for extracting attenuation time from the CSI. The 694

variation in CSI amplitude during localization for a camera 695

at different azimuth angles are shown in Figure 11. It can 696

be observed that the CSI amplitude variation is significantly 697

influenced by the azimuth angle of the wireless camera 698

relative to CAMLOPA. Generally, the larger the angle, the 699

shorter the duration of significant fluctuations in CSI from 700

Path 1 (CSI 1), while the duration of significant fluctuations 701
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Figure 11: The CSI amplitude during localization. The black dots represent the start and end points of significant CSI
fluctuations for each path. By dividing the duration of significant attenuation of path 1 by that of path 2, we obtain Ro,
which is then used to calculate θ according to Equation 26. In (c) and (g), Ro is calculated as 0.8

0.66 = 1.21, and substituting
this into Equation 26 yields θ = 72.18◦. The calculations for the others follow the same procedure.

in CSI from Path 2 (CSI 2) increases. These experimental702

results validate the feasibility of the azimuth localization703

scheme proposed by CAMLOPA. Additionally, here are some704

practical consideration:705

• The fluctuation duration of CSI 2 may not accurately706

reflect the actual path length causing the fluctuation, as707

it takes time for the user to accelerate from a stationary708

state to walking.709

• When the angle is too small (0 degrees) or too large710

(90 degrees), the calculated Ro significantly deviates711

from the theoretical Ro. This is due to the limited712

indoor space usually causes the user to stop after a713

short distance due to obstacles.714

To obtain the duration of significant CSI fluctuations, we715

use different methods for CSI 1 and CSI 2. For CSI 1, we716

first identify the lowest point and then use the calculated717

inverse to find the start and end points of the fluctuation.718

For CSI 2, we first calculate the mean values of the initial719

and later segments, then we construct a piecewise wave-720

form where the values of the initial and later segments are721

equal to the calculated means. By adjusting the position722

of the segmentation, we find the point that best matches 723

the waveform with CSI 2 to determine the midpoint of the 724

fluctuation. We then calculate the inverse to identify the 725

start and end points of the fluctuation. Additionally, based 726

on our first observation, we scale the calculated fluctuation 727

duration for CSI 2 to eliminate errors. For activities that 728

cause fluctuations exceeding a certain duration, we increase 729

the fluctuation time to mitigate the effect noted in the 730

second observation. As shown in Fig 11, CamPoLA achieves 731

localization of cameras depolyed at different positions. 732

Figure 12 shows the variations in CSI 3 (corresponding 733

to Path 3) when the wireless camera is located in different 734

quadrants. It is obvious that the quadrant localization scheme 735

proposed by CAMLOPA is also effective. Since CSI consists 736

of many different subcarriers, and different subcarriers have 737

varying sensitivities to user activity (with higher amplitudes 738

indicating lower sensitivity), CAMLOPA focuses only on the 739

periods of significant attenuation. Therefore, we select the 740

five subcarriers with the highest amplitudes, average them 741

after filtering, and use this average as the final input for 742

CAMLOPA to calculate Ro and the quadrant. 743



(a) 28.61◦, path3.

(b) 130.1◦, path3.

Figure 12: The CSI amplitude during quadrant determina-
tion. When the camera is located in the first quadrant (a),
the user’s starting position blocks the LOS, resulting in
significant fluctuations during movement. In contrast, when
the camera is located in the second quadrant (b), the user
does not block the LOS, leading to minor fluctuations.
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Figure 13: Snooping camera detection performance.

6.4. Performance of Wireless Camera Detection744

CAMLOPA detects wireless cameras monitoring the cur-745

rent area by first identifying suspicious devices, prompting746

the user to leave the room, and monitoring throughput747

changes to detect snooping hidden wireless cameras. CAM-748

LOPA achieves an 84.35% success rate in identifying sus-749

picious wireless cameras across all devices. The probability750

of identifying the 360 camera as a suspicious device is 0,751

while the accuracy of detecting other wireless cameras as752

suspicious devices reaches 98.41%. This discrepancy occurs753

because, during traffic sniffing, the 360 wireless camera754

only allows the capture of ACK Block and Request-to-755

Send packets, but not QoS data packets. This limitation 756

may be due to the special data transmission methods or 757

protocols they use, which prevent its traffic from being 758

intercepted, thus hindering detection and previous methods 759

based on WiFi traffic all cannot work [12], [13], [14], [15]. 760

However, the nexmon tool used by CAMLOPA can still 761

capture the CSI for the 360 camera from WiFi traffic. The 762

snooping camera detection results are shown in Figure 13. 763

CAMLOPA achieves a 95.37% success rate in detecting 764

snooping cameras for six types of cameras across three 765

rooms, except for the 360 wireless camera. For devices 766

similar to the 360 camera, we believe that wireless camera 767

detection can still be achieved by querying the OUI of the 768

captured Request-to-Send packet’s leaked MAC address. By 769

constructing an OUI table of all available devices using 770

device name information from shopping platforms and MAC 771

address lookup websites, it is possible to identify the device 772

type. However, CAMLOPA cannot determine whether the 773

camera is monitoring the current area using this method. 774

6.5. Performance of Wireless Camera Localization 775

Overall Performance: The localization results across three 776

rooms are shown in Figure 14, where CAMLOPA achieves 777

an average azimuth localization error of 17.23 degrees for 778

wireless hidden cameras. CAMLOPA demonstrates higher 779

localization accuracy for cameras placed within the 40-90° 780

range, while accuracy decreases for cameras located in the 781

second quadrant or near 0°. This discrepancy is attributed 782

to errors introduced by the quadrant determination scheme 783

and path length limitations. The primary source of quadrant 784

determination error is the human torso, which is relatively 785

large and can introduce significant noise into the reflected 786

signals. Such errors in quadrant localization can lead to 787

azimuth errors of up to 180°. To mitigate this, searching 788

the opposite location can help identify the correct position. 789

For cameras near 90°, the algorithm described in Section 6.3 790

tends to output predictions close to 90°, resulting in lower 791

localization errors. Overall, CAMLOPA achieves high accu- 792

racy with low user efforts, minimal space requirements and 793

no need for training. 794

Robustness: As shown in Figuree 15, CAMLOPA maintains 795

consistent localization performance across different camera 796

types, demonstrating its robustness to device variations. 797

The azimuth localization errors for CAMLOPA across three 798

rooms were 17.95°, 14.48°, and 18.58°, respectively, further 799

emphasizing its resilience to environmental changes. This 800

robustness is a result of CAMLOPA’s localization algorithm, 801

which is a model-based method. Learning-based methods 802

used in previous approaches [16] require extensive training 803

data to ensure robustness. 804

Influence of Tq: We also conducted ablation experiments 805

in Rooms 1 and 2 to determine the optimal value for the 806

threshold Tq. Using classification accuracy as the evaluation 807

metric, the results (accuracy: thresholds) were: (0.1: 0.5, 0.3: 808

0.6, 0.5: 0.8, 0.6: 0.85, 0.7: 0.8, 0.9: 0.6). The results were 809

consistent across both rooms, leading to the selection of 810

Tq = 0.6 as the optimal threshold. 811
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Figure 14: Localization results of hidden cameras deployed at different positions.

6.6. Comparative Study812

Performance Comparison: Most previous localization813

methods [12], [13], [15] typically evaluate in nearly empty814

rooms and use distance as the evaluation metric, making815

direct comparisons with our approach challenging. Addi-816

tionally, many of these studies have not been open-sourced.817

Therefore, we compare CAMLOPA with the SOTA method818

LocCams [16]. LocCams collects CSI while the user holds819

the device in four different orientations. It then uses a pre-820

trained deep learning model to identify which orientations821

have their LOS paths blocked, with the mid-direction of822

the blocked LOS paths considered the device’s azimuth.823

We conducted experiments in Room 2 using two cameras824

(360 and Gc) across four different locations. The results,825

presented in Table 2, include in-domain (ID), cross-device826

(CD), and cross-device-room (CDR) comparisons. The find-827

ings clearly demonstrate that CAMLOPA outperforms Loc-828

Cams, showing better overall accuracy and robustness.829

Cost, Time, and User Effort Comparison: The total cost830

of our system is $82.71 (Raspberry Pi: $79.20 + USB net-831

work adapter: $3.51). In comparison, LocCams uses a Nexus832

5, priced at $99.99 on Amazon. Other traffic-based systems833

such as SNOOPDOG [13], Lumos [12], and ScamF [15] also834

use Raspberry Pi, while MotionCompass [14] uses an An-835

droid device (note that only certain smartphones allow root836

access for collecting CSI or traffic, meaning smartphone-837

based platforms often incur additional hardware costs).838

RF/infrared-based solutions, such as HeatDeCam [11] and839

LAPD [10], require more expensive equipment (over $300).840

In terms of time, LocCams is the fastest, taking only 0.5841

minutes for localization. CAMLOPA requires 1.5-2 minutes,842

but this additional time significantly improves both accuracy843

and robustness. MotionCompass, based on traffic patterns,844

takes around 3 minutes. Other RSSI/traffic-based systems845

typically takes 15-30 minutes [12], [13], [15]. For user846

efforts, MotionCompass require the user to walk several847

straight paths that span both monitored and unmonitored848

areas, which can be difficult to achieve in real-world en-849

vironments. Other RSSI/traffic-based systems require users850

to walk around the perimeter of the room multiple times851

or constantly adjust a laptop’s position to cover most areas,852

which is also impractical. LocCams requires the least user853

effort, as users only need to perform a few turns. CAMLOPA,854

requiring users to walk three orthogonal paths, has the855

TABLE 2: Comparison with other methods.

Method CAMLOPA LocCam ID LocCam CD LocCam CDR
360 17.60 25.10 30.22 40.32
Gc 15.13 27.55 38.90 43.39
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Figure 15: Localization results across different device.

second-lowest effort requirement, while offering significant 856

improvements in performance. Moreover, such paths are 857

easy to find in everyday environments, such as hotels. 858

7. Disscussion 859

In this section, we discuss the limitations of CAMLOPA, 860

the potential risks, and possible improvements. 861

Non-WiFi Cameras. The fundamental principle behind 862

CAMLOPA’s detection and localization of wireless cameras 863

limits its applicability to live streaming spy cameras on 864

WiFi networks. It does not extend to cameras that use 865

local storage, cellular networks, or Ethernet. However, most 866

recent crime cases have involved WiFi spy cameras [15] 867

because they are easy to deploy and manage, and their 868

prevalence is rapidly increasing in the commercial market. 869

Therefore, CAMLOPA is suitable for many scenarios. To 870

expand the detection range, infrared or optical methods [10], 871

[11] would still be needed. 872

MAC Address Randomization. Although some devices 873

employ MAC address randomization [61] to enhance secu- 874

rity, this does not affect CAMLOPA’s detection and localiza- 875

tion capabilities. This is because devices, even with MAC 876

address randomization, use a consistent MAC address for 877

communication once a network connection is established. 878

Non-VBR Devices. When CAMLOPA detects whether a 879

camera is monitoring the current area, the device’s traffic 880

must be encoded using a Variable Bit Rate (VBR) algorithm. 881

While this algorithm is used by the vast majority of wireless 882



camera devices, if a camera is specifically designed to883

encode video/audio information at a constant bit rate (CBR),884

CAMLOPA may only be able to roughly detect its presence885

using the OUI table. However, CAMLOPA can still locate886

such devices through the proposed localization scheme.887

False Positives and Misdiscard. To evaluate the false888

positive rate of detection, we simulated potential activities889

that could trigger false alarms in Room 1 by setting up890

a computer uploading files and having another computer891

and smartphone engaged in video conferencing. Only 6.67%892

of the samples resulted in false positives. Furthermore,893

devices that generate significant traffic like camera indoors894

are typically under user control, which makes it unlikely for895

them to cause interference. Even if devices in neighboring896

rooms trigger false alarms, they would primarily increase the897

workload rather than posing a security risk. Our approach898

filters out routers with weak RSSI values. While the position899

of the wireless camera may differ from the CamLoPA de-900

vice, leading to potentially different RSSI values, this could901

result in misdiscarding some devices. To mitigate this, we902

implemented a margin of tolerance by slightly lowering the903

RSSI threshold (by 5 dBm) below the level required for904

reliable streaming quality to prevent incorrectly exclusion.905

Evading CAMLOPA. We acknowledge that more powerful906

attackers may have ways to evade CAMLOPA. Attackers907

could modify the behavior of hidden cameras by customiz-908

ing hardware or altering firmware to change the packet size909

or arrival intervals, thus avoiding detection. These methods910

could prevent CAMLOPA from detecting them. However,911

such tactics require a high level of expertise from the912

attacker. The localization module, based on wireless sig-913

nal propagation path analysis, can still function normally914

by using the device’s MAC address and WiFi channel.915

Avoiding localization would require modifying the network916

card hardware to control the WiFi signal’s transmission917

power, causing it to constantly change and disrupt the signal918

attenuation trend caused by user activity. This also requires919

attackers to have specialized knowledge, and modifying net-920

work card hardware is considerably challenging. According921

to the latest research [62], the majority of surveillance922

tools still rely on commercially available devices, thus923

we have not consider adaptive attack in our evaluation.924

Limitations and Fault Tolerance. CAMLOPA can only925

localize wireless cameras within the 0-180o range. However,926

in real-world environments, it is relatively easy to find a927

location near a wall to place the CAMLOPA device, and928

it can perform two rounds of positioning to achieve 360o
929

localization. Another limitation is that CAMLOPA assumes930

users walk along two orthogonal straight paths at a constant931

speed, which may introduce faults in real-world scenarios.932

However, in actual environments, the layout of indoor fur-933

niture (such as floor stripes, walls, and furniture) can help934

guide users to maintain two straight walking paths. Addi-935

tionally, users can easily control their walking speed within a936

certain range to minimize the biases. Our experiments were937

conducted in real-world environments, without any special938

measures to assist the users in walking in a straight line939

and control speed. The results demonstrate the robustness940

TABLE 3: Evaluation with Challenging Environments.

Materials Normal Plastic Textile Metal
360 17.60 16.51 16.06 22.42
Gc 15.13 17.62 14.79 39.79

of our approach to these liminations. For fault tolerance, 941

although CAMLOPA’s localization results are not perfectly 942

precise in confined indoor spaces, it significantly reduce the 943

search area and reduce user efforts for the user compare to 944

previous studies. 945

Multiple Cameras. While we evaluated CAMLOPA in 946

single-camera scenarios, it can easily be extended to situ- 947

ations involving multiple cameras. During the camera de- 948

tection phase, a single user walking can detect multiple 949

cameras by clustering the MAC addresses of all captured 950

packets. However, when capturing CSI, the Nexmon tool can 951

only obtain packets from one MAC address at a time. As 952

a result, to localize multiple cameras, the user must repeat 953

the localization process for each individual camera. 954

Challenging Environments. In real-world settings, attack- 955

ers may attempt to disguise hidden cameras using various 956

objects. To assess the performance of CAMLOPA under such 957

conditions, we evaluated its effectiveness when cameras 958

were obscured by different materials. The results, presented 959

in Table 3, show that common materials like plastic and 960

textiles had minimal impact on CAMLOPA’s performance. 961

However, metal caused a significant degradation in per- 962

formance. This is because metal absorbs wireless signals, 963

which not only impairs CAMLOPA’s localization capabili- 964

ties but also degrades overall network quality. As a result, 965

attackers are unlikely to use metal to conceal WiFi cameras. 966

Future Work for Improvement. Next, we aim to further 967

reduce user effort and eliminate localization errors caused 968

by user activity. This will involve using low cost 3D-printed 969

kits with metal obstructions as peripherals. By controlling 970

the metal obstructions to rotate around the Raspberry Pi, 971

we can perturb the CSI. Constructing a corresponding CSI- 972

azimuth model will enable more precise localization with 973

no user effort. We plan to explore building indoor wireless 974

device maps based on our localization technology. Combine 975

this map with WiFi traffic and CSI will help us study new 976

smart home related risks and develop defensive measures. 977

8. Conclusion 978

In this paper, we propose CAMLOPA, a framework for 979

detecting and locating wireless hidden cameras based on 980

wireless signal propagation path analysis, specifically fo- 981

cusing on diffraction attenuation. CAMLOPA establishes a 982

relationship between the signal attenuation caused by user 983

activity and the location of the wireless camera. We evalu- 984

ate the performance of CAMLOPA through comprehensive 985

experiments in real-world conditions. Compared to current 986

methods, CAMLOPA offers several advantages: it is cost- 987

effective, requires no training, demands less activity space, 988

and involves minimal user effort. However, CAMLOPA still 989

has some limitations. In future work, we aim to further 990

reduce user effort and minimize localization errors through 991

the use of low-cost peripherals. 992
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Appendix A.1240

Background: Detecting and Locating Hidden1241

Wireless Cameras1242

Current wireless hidden camera detection methods gen-1243

erally rely on information leaked through wireless channels1244

or other side channels when the camera is in operation. For1245

example, wireless communication can unintentionally leak1246

information through certain out-of-band channels, which1247

has recently been leveraged for detecting the presence of1248

wireless devices. Sathyamoorthy et al. [7] and Valero et al.1249

[8] highlight the importance of carefully setting the received1250

power threshold to avoid false positives or missed detec-1251

tions. Approaches like LAPD [10], CamRadar [25], and1252

Heatdecam [11] rely on thermal/electromagnetic emissions1253

and lens reflections to detect cameras in operation. These1254

methods typically use specialized, often expensive sensors1255

to capture side-channel information for detection. While1256

effective in locating devices within the Line-of-Sight (LOS),1257

these techniques require detection equipment to be in close1258

proximity to the hidden camera to capture subtle changes in1259

the signals, making them impractical for ordinary users and1260

ineffective in hard-to-reach areas.1261

Some methods leverage WiFi packet sniffing to detect1262

wireless cameras, as these cameras transmit data packets1263

during operation. Systems like Dewicam [17], Cheng et1264

al. [20], Liu et al. [9], and Miettinen et al. [63] achieved1265

detection by learning the traffic characteristics of wireless1266

cameras. However, machine learning-based approaches of-1267

ten face robustness issues due to their dependence on large1268

training datasets. SNOOPDOG [13] and ScamF [15] focus1269

on the causal relationship between wireless camera traffic1270

and human activity, where significant movement within the1271

monitored area increases encoded data traffic. This rela-1272

tionship provides valuable information for detecting surveil-1273

lance. Motioncompass [14] and LocCams [16] also lever-1274

age side-channel information, such as the Organizationally1275

Unique Identifier (OUI) in the MAC address, which can1276

reveal the device’s manufacturer and type.1277

The localization of wireless hidden cameras also relies1278

on side-channel information leakage, but not all types of1279

side-channel data are suitable for simultaneous detection1280

and localization. Methods based on thermal/electromagnetic1281

emissions [11], [25] and lens reflections [10] can detect1282

and localize cameras by identifying regions with abnormal1283

signals. However, these methods share similar limitations for1284

localization as they do for detection: they are difficult to de-1285

ploy and require proximity to the hidden camera [16]. Detec-1286

tion schemes that rely on traffic analysis require additional1287

effort to achieve localization. For instance, these methods1288

often depend on changes in RSSI strength or data flow as the1289

user carrying the detection device moves around the space to1290

infer the camera’s location [12], [13], [15]. These schemes1291

typically require the room to be nearly empty, which may1292

not be feasible in real-world environments with furniture,1293

as the user’s mobility is constrained and they may not be1294

able to approach the hidden camera. Recently, Loccams [16]1295

TABLE 4: Received Signal Strength Indication (RSSI).

Signal
Strength

Conclusion Describe Required
for

-30
dBm

Amazing Max achievable signal
strength. Not typical or
desirable in the real world.

N/A

-67
dBm

Very
Good

Minimum signal strength for
applications that require very
reliable, timely delivery of
data packets.

VoIP,
video
stream

-70
dBm

Okay Minimum signal strength for
reliable packet delivery.

Email,
web

-80
dBm

Not Good Minimum signal strength for
basic connectivity. Packet de-
livery may be unreliable.

N/A

-90
dBm

Unusable Approaching or drowning in
the noise floor. Any function-
ality is highly unlikely.

N/A

introduced a method that uses CSI to determine whether 1296

the user is blocking the LOS path between the positioning 1297

equipment and the wireless camera, allowing for a rough 1298

estimate of the camera’s location. However, this method has 1299

a localization resolution of only 45 degrees, and its deep 1300

learning-based approach suffers from poor robustness for 1301

environments and devices change. 1302

Appendix B. 1303

Fresnel Zone Visualization 1304

The visualization of the Fresnel zones described in 1305

Section 2 is shown in Figure 16, consisting of a series of 1306

concentric ellipses. 1307

x

y

Boundary of the 1st Fresnel Zone

Boundary of the 2nd Fresnel Zone

Boundary of the nth Fresnel Zone

1st Fresnel Zone

2nd Fresnel Zone

nth Fresnel Zone

Tx Rx

Qn

Q1

Figure 16: Illustration of Fresnel Zone.

Appendix C. 1308

More Details of Camera Detection 1309

We present the Received Signal Strength Indication 1310

(RSSI) requirements for various applications in Table 4. In 1311

practice, when CAMLOPA filters out APs based on RSSI, it 1312

retains a 5 dBm margin to avoid the risk of misdiscard. 1313

The structure of an 802.11 wireless frame [64], [65] is 1314

shown in Figure 17. It consists of an unencrypted header 1315
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Frame
Control (2B)
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(2B)

Destination
Address (6B)
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Control (2B)
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Frame Check
Sequence (4B)

Figure 17: IEEE 802.11 wireless frame.

and an encrypted data payload. The header contains essen-1316

tial unencrypted information, such as addresses, while the1317

payload is typically encrypted using WEP, WPA, or WPA2.1318

Regarding video compression standards, three types of1319

frames are commonly used to compress video: I (Intra-1320

coded picture) frames: these frames contain complete image1321

information and can be decoded independently of other1322

frames, P (Predicted picture) frames: these frames encode1323

residual information and require information from preceding1324

I frames for decoding, and B (Bi-directionally predicted1325

picture) frames: these frames can construct images using1326

changes from preceding I or P frames, subsequent I or P1327

frames, or interpolations between preceding and subsequent1328

I/P frames. Among these frame types, B frames are the most1329

compressible, followed by P frames, and finally, I frames. In1330

video footage captured by the camera, significant changes1331

between frames lead to an increase in the number of P and1332

B frames, which in turn results in higher upload traffic.1333

Appendix D.1334

More Details of Evaluation Setting1335

We evaluated the performance of CAMLOPA on seven1336

different wireless cameras, as listed in Table 51337

TABLE 5: Cameras used in experiments.

Camera Abbreviation Cost
XiaoMi Cloud Camera2 Mi 24.5

XiaoYi Smart Camera Y4 Yi 20.4
EZVIZ C2C C2C 24.5

360 Cloud Camera 8Pro 360 24.5
V380 Camera V380 13.6

Guangchun Mini Camera Gc 31.4
HiLEME Mini Camera Hi 18.4

For hidden camera detection and localization. As shown1338

in Figure 10, in each room, we select several potential1339

locations suitable for monitoring the entire room to place1340

the cameras for the experiments. The azimuths (path 1 as1341

x-axis) of each point in room 1 are 28.61◦, 42.27◦, 60.28◦,1342

88.54◦, 130.1◦, and 157.73 ◦, in room 2 are 4.86◦, 51.34◦,1343

69.44◦, and 103.52 ◦, and in room 3 are 110.94◦, 92.37◦,1344

61.34◦, 47.13◦, and 30.69 ◦.1345

Appendix E.1346

More Details of Prototype Implementation1347

CAMLOPA requires sniffing 802.11 packets to obtain1348

CSI. Currently, most mobile devices require special permis-1349

sions to perform sniffing, and due to the closed-source nature 1350

of wireless network card manufacturers, CSI extraction is 1351

only possible with certain network cards. However, acquir- 1352

ing this data poses no technical challenge but only involves 1353

permission issues. To ensure system applicability, we did 1354

not implement CAMLOPA on specific phone or computer 1355

platforms capable of extracting CSI. Instead, we chose the 1356

open-source, low-cost COTS device, the Raspberry Pi, as 1357

the platform for CAMLOPA. 1358

Our code and demo are available at https://anonymous. 1359

4open.science/r/CamLoPA-Code-DFD5. The CAMLOPA 1360

prototype relies on the Raspberry Pi 4B hardware. The 1361

system is built on Raspberry Pi OS (kernel version 4.9, 1362

firmware version 7 45 189) and requires Python 3. Before 1363

using the system, you must first install the nexmoncsi tool 1364

and the necessary Python dependencies. Please ensure that 1365

you do not use upgrade commands during system setup, 1366

as updating the firmware may cause nexmoncsi to mal- 1367

function. Additionally, since this system version is older 1368

and no longer maintained, some required packages must be 1369

installed using the apt-get command instead of pip. After 1370

the review process, we will package the image and virtual 1371

environment, along with the necessary dependencies, and 1372

provide a download link to facilitate system replication for 1373

future users. During the installation of nexmoncsi, wireless 1374

network functionality is temporarily disabled. To restore 1375

wireless connectivity on the Raspberry Pi, you will need to 1376

manually activate the wireless interface and configure the 1377

network settings. 1378

https://anonymous.4open.science/r/CamLoPA-Code-DFD5
https://anonymous.4open.science/r/CamLoPA-Code-DFD5
https://anonymous.4open.science/r/CamLoPA-Code-DFD5
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