
CVPR
#6241

CVPR
#6241

CVPR 2025 Submission #6241. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

empty
AVF-MAE++ : Scaling Affective Video Facial Masked Autoencoders via

Efficient Audio-Visual Self-Supervised Learning

Anonymous CVPR submission

Paper ID 6241

Abstract

Affective Video Facial Analysis (AVFA) is important for ad-001
vancing emotion-aware AI, yet the persistent data scarcity002
in AVFA presents challenges. Recently, the self-supervised003
learning (SSL) technique of Masked Autoencoders (MAE)004
has gained significant attention, particularly in its audio-005
visual adaptation. Insights from general domains suggest006
that scaling is vital for unlocking impressive improvements,007
though its effects on AVFA remain largely unexplored. Addi-008
tionally, capturing both intra- and inter-modal correlations009
through robust representations is a crucial challenge in this010
field. To tackle these gaps, we introduce AVF-MAE++, a011
series audio-visual MAE designed to explore the impact of012
scaling on AVFA with a focus on advanced correlation mod-013
eling. Our method incorporates a novel audio-visual dual014
masking strategy and an improved modality encoder with a015
holistic view to better support scalable pre-training. Fur-016
thermore, we propose the Iteratively Audio-Visual Corre-017
lations Learning Module to improve correlations capture018
within the SSL framework, bridging the limitations of prior019
methods. To support smooth adaptation and mitigate over-020
fitting, we also introduce a progressive semantics injection021
strategy, which structures training in three stages. Exten-022
sive experiments across 17 datasets, spanning three key023
AVFA tasks, demonstrate the superior performance of AVF-024
MAE++, establishing new state-of-the-art results. Abla-025
tion studies provide further insights into the critical design026
choices driving these gains. The code will be released soon.027

1. Introduction028

Affective Video Facial Analysis (AVFA) aims to detect and029
interpret human affective states from facial videos, which030
has great application values in fields such as HCI [50] and031
dialogue systems [56]. Since audio-visual cues (e.g., facial032
expressions and prosody) predominantly contribute to 93%033
of emotional perceptions [46, 72], audio-visual AVFA has034
made rapid progress over the past decades. With the fast de-035
velopment of deep learning and numerous datasets, super-036
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Figure 1. Performance comparisons of AVF-MAE++ and state-of-
the-art AVFA methods on 17 datasets across CEA, DEA, and MER
tasks. Notably, we report the averaged results over dimensions on
both Werewolf-XL [79] and AVCAffe [55] datasets.

vised deep models have been the mainstream paradigm for 037
AVFA [29, 80, 81]. Although supervised learning has made 038
great strides, it fatally requires large-scale labeled data. Fur- 039
thermore, it is extremely expensive and time-consuming to 040
annotate high-quality emotions [73]. 041

A natural intuition is to utilize abundant unlabeled video 042
data to compensate for the AVFA data scarcity. As a re- 043
sult, self-supervised learning (SSL) methods for AVFA has 044
drawn massive attention, particularly Masked Autoencoders 045
(i.e., MAE) [28]. Specifically, MAE aims to reconstruct the 046
raw data from masked facial videos, leading to the emer- 047
gence of various visual and audio-visual AVFA MAE meth- 048
ods [58, 60, 61]. Meanwhile, following the promising find- 049
ings in image and language domains [2, 28], VideoMAE 050
V2 [67] has shown that scaling model capacity and data size 051
are essential for exhibiting remarkable performance gains. 052
However, very few work has explored the scaling prop- 053
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erties of MAE pre-training for AVFA, which is more se-054
vere in audio-visual field. While [60, 61] provides models055
with varying capacities, their largest size generally reaches056
the ten-million scale, lagging behind those in general do-057
mains. More importantly, a key aspect for scalable audio-058
visual MAE pre-training is the effective capture of intra-059
and inter-modal correlations through robust representations060
since the prevalent audio-visual co-expressions of emotions.061
Nonetheless, existing AVFA methods under SSL manner062
still have limitations in capturing correlated cues [73, 89].063

To fill these gaps, we aim to explore the scaling proper-064
ties of audio-visual MAE for AVFA, with a focused empha-065
sis on capturing intra- and inter-modal correlations, pushing066
the performance limits across diverse downstream datasets.067
Building upon HiCMAE [60], we scale the audio-visual068
MAE and further conduct million-level data scaling for the069
pre-training stage to harness their full potential. In addi-070
tion, we design related components to explicitly enhance071
the capture of audio-visual correspondences, addressing the072
dilemma faced by existing AVFA methods. However, we073
still need to carefully tackle several issues as below:074

(1) Computational costs and memory consumptions re-075
main the primary bottlenecks in scaling audio-visual MAE.076
Although [60] adopts the asymmetric encoder-decoder de-077
sign from [62], it still struggles to fully support the pre-078
training for large-scale models. Inspired by the dual mask-079
ing strategy for the asymmetric architecture from [67],080
we adaptively present the audio-visual dual masking strat-081
egy, leading to a more efficient audio-visual self-supervised082
proxy task. Meanwhile, the vanilla global space-time at-083
tention mechanism incurs quadratic scaling costs, and large084
redundancy (e.g., facial symmetry) exists in 3D facial video085
data, rendering the expenses suboptimal. We thus flexibly086
introduce a local-global interaction attention paradigm for087
modality encoders, while elevating the holistic view to com-088
pensate for its weakness in global information flow. (2) A089
huge number of unlabeled data is still required to facilitate090
scalable pre-training. Unlike affective analysis in images,091
existing AVFA datasets are typically smaller in scale. To092
tackle this, a simple solution is to mix the unlabeled video093
data from multiple sources. Following [58, 60], we mainly094
mix datasets towards speaker recognition and successfully095
build a large-scale pre-training dataset with around 1.36M096
clips. (3) Previous methods commonly utilize self-attention097
and cross-attention components to build correlations mod-098
eling layers, leading to inadequate cross-modal interactions099
and a lack of hierarchical aggregative integrations across100
multi-semantic scales. Besides, they often neglect the role101
of multi-modal features in learning comprehensive repre-102
sentations. To this end, we propose the IAV-CL Module103
(Iteratively Audio-Visual Correlations Learning Module),104
which effectively promotes the capture of audio-visual cor-105
relations. (4) A key challenge for SSL methods is smoothly106

adapting the pre-trained models to downstream datasets. 107
Directly performing fine-tuning on small-scale downstream 108
datasets often leads to severe overfitting, hindering the full 109
potential of pre-trained models. Therefore, we propose the 110
progressive semantics injection (PSI) strategy that leverages 111
supervised hybrid datasets from diverse sources to act as a 112
bridge between pre-training and downstream fine-tuning. 113

Based on the above analysis, we propose a series audio- 114
visual MAE termed AVF-MAE++. By leveraging the dual 115
scaling in both model capacity and data size, along with 116
the introduced IAV-CL Module, we further present the 117
PSI strategy to construct a three-stage progressive train- 118
ing pipeline. The overall pipeline consists of large-scale 119
audio-visual masked pre-training, post-pretraining on su- 120
pervised hybrid datasets, and targeted fine-tuning on down- 121
stream datasets. To verify the effectiveness of our method, 122
we conduct extensive pre-training and evaluate model per- 123
formance across three key downstream tasks involving 17 124
datasets. As illustrated in Fig. 1, our AVF-MAE++ outper- 125
forms various state-of-the-art supervised or self-supervised 126
approaches. Remarkably, AVF-MAE++ is the first method 127
to surpass 60% WAR on MAFW (11-class) [42] dataset. 128

In addition to advancing AVFA, our work also con- 129
tributes to research in MLLMs [13], talking face genera- 130
tion [68], and deepfake detection [69]. Our main contribu- 131
tions are three-fold: (1) We introduce AVF-MAE++ to ex- 132
plore the scaling properties of audio-visual MAE for AVFA, 133
incorporating efficient dual scaling and a progressive adap- 134
tation strategy. As pioneers, we strive to lay a solid founda- 135
tion for future research. (2) Departing from previous meth- 136
ods, we adaptively introduce a local-global interaction at- 137
tention paradigm enhanced with a more holistic perspective. 138
We further propose the IAV-CL Module to explicitly im- 139
prove the capture of intra- and inter-modal correlations. (3) 140
Extensive experiments across 17 datasets, spanning three 141
AVFA tasks, verify the effectiveness of AVF-MAE++. We 142
also justify the design choices of our method by ablations. 143

2. Related Work 144

Audio-visual AVFA. Most studies on audio-visual AVFA 145
fall into the supervised learning paradigm [23, 73], primar- 146
ily focusing on two important aspects: uni-modal feature 147
extraction and audio-visual information fusion. With the 148
progress of deep learning, various video and audio feature 149
extractors have been developed [43, 66, 82]. Recently, the 150
success of self-supervised learning in general domains has 151
spurred the emergence of large pre-trained models, achiev- 152
ing significant results in emotion analysis [30, 58, 61]. Re- 153
garding audio-visual information fusion [45, 60], model- 154
level fusion is the most widely adopted strategy, mainly 155
building upon the self-attention and cross-attention com- 156
ponents [59, 64, 81]. Despite promising results, most of 157
the above audio-visual AVFA methods are under the super- 158
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vised learning manner, which are severely constrained by159
the scarcity of labeled emotion data and domain shifts.160
Masked Audio-Visual Modeling. Masked data modeling161
learns representations by reconstructing the masked por-162
tions of input. Previous works [25, 33, 71] have extended163
this learning approach to the audio-visual domain, demon-164
strating impressive results across a variety of downstream165
tasks. Among them, MAE-style methods have attracted sig-166
nificant interests due to their efficient data learning capabil-167
ities [22, 24, 47]. However, the representations learned by168
these methods are typically unsuitable for AVFA, as they are169
not specifically trained on facial video data. Recently, VQ-170
MAE-AV [54] introduces a vector-quantized MAE tailored171
for audio-visual AVFA, and Sun et al. [60] present HiC-172
MAE with a three-pronged learning strategy. Despite these173
advancements, the scaling properties of MAE-style meth-174
ods have not been thoroughly explored for audio-visual175
AVFA, leaving substantial gaps. In addition, there is still176
room for improvement in the correlations capture of above177
methods. In this paper, we introduce AVF-MAE++, aiming178
to bridge these gaps and promote the progress of AVFA.179
Masked Autoencoders Scaling. Building upon the foun-180
dational success of MAE, researchers have widely explored181
its scaling properties across various fields. SimMIM [75]182
studies the data scaling capability of masked image mod-183
eling. VideoMAE [62] and MAE-ST [21] have trained the184
huge video transformers with millions of parameters, while185
VideoMAE V2 [67] scales the VideMAE [62] in both model186
capacity and data size. Han et al. [26] propose the Efficient187
MAE with a novel loss and a new masking strategy. Singh188
et al. [57] present an additional pre-pretraining stage to im-189
prove model initialization. In AVFA, some works have ini-190
tially explored the scaling properties of MAE [58, 60, 61],191
but they primarily focus on limited model scaling, with min-192
imal exploration of data scaling. To this end, we scale193
audio-visual MAE in terms of both model capacity and data194
size with the currently largest AVFA pre-training dataset.195

3. Methodology196

In this section, we begin by revisiting the foundational work197
HiCMAE [60] in Sec. 3.1. We then introduce the audio-198
visual dual masking strategy (Sec. 3.2), improved modality199
encoder (Sec. 3.3), and the IAV-CL Mdoule (Sec. 3.4), as200
shown in Fig. 2. Finally, we elaborate on the details of dual201
scaling and the progressive adaptation strategy (Sec. 3.5).202

3.1. HiCMAE Revisited203

HiCMAE [60] follows the asymmetric encoder-decoder ar-204
chitecture of [28] and proposes a three-pronged hierarchical205
strategy. Next, we briefly revisit its implementation details.206
Data Embedding. A cube embedding layer and a patch em-207
bedding layer are first utilized to divide Xv ∈ RTv×H×W×3208
and Xa ∈ RTa×F , leading to token lists: X

′

v = Φv
emb(Xv)209

and X
′

a = Φa
emb(Xa), where X

′

v = {X′i
v }

Nv
i=1 and X

′

a = 210

{X′j
a }

Na
j=1 are the token sequences, (X

′i
v ,X

′j
a ) ∈ R1×C are 211

the tokens output by the embedding layers and then added 212
with positional embeddings. Here, Nv = Tv

2 × H
16 ×

W
16 and 213

Na = Ta

16 × F
16 refer to the lengths of video and audio token 214

sequences, while C denotes the feature channels. 215
Token Masking. HiCMAE deploys the tube masking and 216
random masking for the video and audio branches, using 217
high masking ratios (ρv = 90% and ρa = 80%). Next, only 218
the visible tokens X

′′

v and X
′′

a will run into the encoder, 219
where X

′′

v = {X′i
v }i∈(1−M(ρv)), X

′′

a = {X′j
a }j∈(1−M(ρa)), 220

and their token lengths are N ′
v = 0.1Nv and N ′

a = 0.2Na. 221
M(ρv) and M(ρa) here are the audio-visual masking maps. 222
Encoder. The encoder of HiCMAE simply operates on the 223
visible tokens X

′′

v and X
′′

a with two modality-specific en- 224
coders and a cross-modal fusion encoder: Ea→v , Ev→a 225
= Φa↔v

enc (Φv
enc(X

′′

v ),Φ
a
enc(X

′′

a)), where the modality en- 226
coders are vanilla ViT [17], and the fusion encoder is mainly 227
implemented using multi-head cross-attention components. 228
Decoder. The video and audio decoders, including hierar- 229
chical skip connections, respectively take the combined to- 230
kens as inputs and reconstruct data with narrower and shal- 231
lower ViT: X̂m = Φm

dec(E
c
m), where the combined tokens 232

Ec
m is the concatenated sequence of encoded tokens Em̄→m 233

and the learnable masked tokens [MASK]m (with position 234
embeddings), the token length Nd

m =Nm, and m ∈ {a, v}. 235
Pre-training Loss. The pre-training object is to minimize 236
the combination of modality-specific Mean Square Error 237
(MSE) Losses and the introduced HCMCL Loss [60], i.e., 238

L = (La
MSE + Lv

MSE) + λ ·
Nc∑
k=1

LInfoNCE(e
k
a, e

k
v), (1) 239

where λ is the weight factor, Nc is the number of selected 240
enocder layers in hierarchical skip connections, and ekm is a 241
batch of sample-level features to adopt HCMCL Loss. 242
Downstream Fine-tuning. After pre-training, the overall 243
encoder incorporating hierarchical feature fusion will be de- 244
ployed to targetedly fine-tune on the downstream tasks. 245

3.2. Audio-Visual Dual Masking Strategy 246

As analyzed in Sec. 3.1, the decoders of HiCMAE need 247
to process the overll tokens, leading to large redundancy. 248
Recently, VideoMAE V2 [67] introduces the dual masking 249
strategy, where the decoder takes inputs from the visible to- 250
kens under the encoder mask Me = Me(ρ

e) and part of 251
the remaining tokens visible under the decoder mask Md = 252
Md(ρ

d), leading to more efficient video pre-training. 253
Inspired by this insight, we present the audio-visual dual 254

masking strategy, including encoder masking Me and de- 255
coder masking Md for both audio and video branches, as 256
illustrated in Fig. 2 (a). Specifically, the encoder masking 257
Mm

e keeps consistent with HiCMAE [60]. For Mv
d, we fol- 258

low [67] to adaptively adopt the running cell masking [52] 259
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Figure 2. The overall illustrations of AVF-MAE++. (a) The pre-training pipeline with our new audio-visual dual masking strategy. (b) The
improved modality encoder. (c) IAV-CL Module. (d) & (e) The dense interaction and evolutionary refinement layers of one DiER Unit.

to boost information complement in this partial reconstruc-260
tion. Regarding Ma

d, we also deploy the random masking261
since the prior knowledge in [32] indicates that audio MAE262
learns easily by predicting nearby contexts. Following [67],263
ρd of Md for both audio and video branches are 50%. With264
this introduced dual masking strategy, the new combined265
token sequence for modality decoder can be formulated as:266

267
Ec

m = Em̄→m ∪ {Mm
i }i∈Mm

d
, (2)268

where Em̄→m denotes the latent features from encoder,269
Mm

i is the learnable masking token with related positional270
embeddings, and m ∈ {a, v}. With this updated sequence271
Ec

m, decoder only regards the visible tokens as the recon-272
struction targets. The final MSE Loss can be given as:273

Lm
MSE =

1

(1− ρdm) ·Nm

∑
i∈Mm

d ∩Mm
e

|Xi
m − X̂i

m|2, (3)274

where Xm and X̂m denotes the original input and the re-275
constructed output of audio-visual modalities, respectively.276

3.3. Improved Modality Encoder277

The large redundancy in facial videos, coupled with the278
heavy computations of global space-time self-attention in279
vanilla ViT [17], impedes efficient large-scale pre-training.280
Motivated by this, we adaptively adopt and improve the281
LGI-Former [58] for the uni-modal encoder since its effec-282
tiveness in reducing computational costs. For simplicity, we283

describe only one encoder layer during fine-tuning, which 284
mainly differs from the pre-training stage in the number of 285
visible tokens per region. The original LGI-Former [58] is 286
proposed for video, which can be decomposed into three 287
stages: (I) local intra-region self-attention, (II) global inter- 288
region self-attention, and (III) local-global interaction. 289

In stage I, the 3D tokens X
′

v ∈ R
Tv
2 × H

16×
W
16×C is first di- 290

vided into K non-overlapping local spatio-temporal regions 291
of equal size Zv = t×h×w, leading to X

′

vi ∈ RZv×C , and 292

X
′

vi is then added with a learnable region token Si ∈ R1×C 293

(i ∈ {1, 2, ...,K}, K = Nv

Zv
). The self-attention then oper- 294

ates on their concatenation to promote local-aware features 295
learning and aggregate information into the region token Si: 296

X̂
′

vi = MHSA(LN(C(Si,X
′

vi))) + C(Si,X
′

vi), (4) 297

where X̂
′

vi ∈ R(Zv+1)×C , MHSA(·) is the vanilla multi- 298
head self-attention, LN(·) and C(·) denote layer normal- 299
ization and concatenation operation. In stage II, all the 300
region tokens {Si}Ki=1 are first aggregated, self-attention 301
is then employed to exchange inter-region information be- 302
tween different regions with negligible costs, i.e., 303

S = MHSA(LN(C(S1, ...,SK))) + C(S1, ...,SK), (5) 304

where S ∈ RK×C is the aggregated region tokens. So far, 305
the region token Si has been consolidated by discriminative 306
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information from other regions, holding a global perspec-307
tive of the overall input tokens. As a result, in stage III,308
multi-head cross-attention between X

′

vi and S is explicitly309
exploited to enable the original local tokens to access the310
global-aware selective information, i.e.,311

X
′

vi = MHCA(LN(X
′

vi),LN(S)) +X
′

vi , (6)312

where MHCA(·) refers to the vanilla multi-head cross-313
attention. Additionally, since the region tokens are im-314
portant to the global evolutionary information flow across315
multiple encoder layers, which should emphasize the more316
holistic master for the local-aware intra-region information,317
we thus introduce the stage IV (global-local interaction):318

S = MHCA(LN(S),LN(X
′

vi)) + S. (7)319

Subsequently, both local and region tokens run through320
the feed-forward networks (FFNs) to perform further refine-321
ments. When applying this encoder to the audio branch, the322
main difference is the patch embedding layer outputs 2D to-323

kens X
′

a ∈ R
Ta
16 × F

16×C , leading to different region shape.324
In stage I, we split X

′

a into K non-overlapping local regions325
of equal size Za = ha × wa, resulting in X

′

ai
∈ RZa×C326

(i ∈ {1, 2, ...,K}, K = Na

Za
). After region division, the327

remaining process keeps consistent with the video branch.328
Finally, we take the region tokens (Sv,Sa) ∈ RK×C as the329
outputs from one encoder layer, and the overall modality330
encoders both consists of Nl sequentially stacked layers.331

3.4. Iteratively Audio-Visual Correlations Learning332

As illustrated in Fig. 2 (c), we present the IAV-CL Module,333
which incorporates the Dense Interactions and Evolutionary334
Refinement (DiER) Units, as well as the Hierarchical Ag-335
gregations and Feedback Enhancement (HAFE) Layer, aim-336
ing to iteratively capture the complementary correlations.337

During fine-tuning, we first stack {Sn
v ,S

n
a}

Nl
n=1, leading338

to the uni-modal features (Fv , Fa) ∈ RK×Nl×C . We then339
utilize the learnable layer weights to dynamically unify fea-340
tures across different encoder layers followed by concate-341
nation to output the original multi-modal feature F0

av , i.e.,342
343

F0
av = C(

Nl∑
l=1

αa
l F

l
a,

Nl∑
l=1

αv
l F

l
v), (8)344

where F0
av ∈ RK×2C ,

∑Nl

l=1 α
m
l = 1. We then simply use345

poolings to reshape Fv and Fa as (F1
v , F1

a) ∈ RK×C . The346
DiER Unit is proposed to perform dense audio-visual inter-347
actions and evolutionarily refine the multi-modal feature in348
the simultaneous manner, which is detailed as follows:349
Dense Audio-Visual Interactions. Considering that se-350
quentially connecting MHSA and MHCA blocks [12, 60]351
supports dense audio-visual interactions insufficiently, we352
adopt the parallel arrangement, as illustrated in Fig. 2 (d).353
Specifically, we first concatenate the parallel outputs of354

the complete attention blocks along the channel dimension, 355
then compute the channel-wise attention scores to perform 356
refinement via a linear layer and a sigmoid function. Next, 357
we use summation to output the densely interacted features: 358

F2
m = σ (WsF

sc
m + bs)F

s
m + σ (WcF

sc
m + bc)F

c
m, (9) 359

Fs
m = MHSA

(
LN(F1

m)
)
+ F1

m, (10) 360

Fc
m = MHCA

(
LN(F1

m), LN(F1
m̄)

)
+ F1

m, (11) 361

where Fsc
m = C (Fs

m,Fc
m), σ(·) is sigmoid function, F2

m ∈ 362
RK×C , W∗ and b∗ (∗ ∈ {s, c}) are learnable parameters. 363
Evolutionary Refinement (ER) Layer iteratively refines 364
the multi-modal feature, leading to the following feedback 365
enhancements of correlations capture. We first simply em- 366
ploy the linear layer to transform F0

av into F1
av ∈ RK×C , 367

then attend F1
av to audio-visual features using the single- 368

head cross-attention (SHCA) block, which dynamically ag- 369
gregates uni-modal useful information into F1

av , as illus- 370
trated in Fig. 2 (e). Inspired by [31], the convolutional block 371
incorporating one 1× 1 convolution followed by the Batch 372
Normalization and PReLU sub-layers is then introduced to 373
generate the residual features Ra and Rv , which discrimi- 374
natively learn invariant audio-visual representations, i.e., 375

Rm = Conv(Att(F1
av,F

2
m,F2

m)), (12) 376

where Conv(·) and Att(·) refer to the convolutional and 377
SHCA blocks. Next, we sum multi-modal feature with Rm 378
to produce features with highly correlated information: 379

Fk
av = LN(Fk−1

av +Rk−1
a +Rk−1

v ), (13) 380

where k ∈ {2, ..., Nc} is the unit index. The parameters of 381
each ER Layer are shared to facilitate evolutionary refine- 382
ments. Finally, the outputs {F2

ai
,F2

vi}
Nc
i=1 of all the units are 383

preserved as features at multi-semantic scales, while FNc
av 384

will be utilized for the following feedback enhancement. 385
We then present the HAFE Layer to hierarchically ag- 386

gregate preserved features and promote correlated relation- 387
ships modeling in reverse. Since features across units have 388
distinct semantic scales, simply using poolings integrates 389
the hierarchical representations inadequately. We thus first 390
stack {F2

mi
}Nc
i=1 along Nc to merge the scale-aware fea- 391

tures, then deploy the unit-level MHSA followed by FFNs 392
to provide aggregatively contextual integrations, which fur- 393
ther considers the intra-modal correspondences, i.e., 394

γm = MHSA(LN(Fs
m) + Fs

m, (14) 395

where Fs
m = Stack(F2

m1
, ...,F2

mNc
). To select the most 396

useful representations, we first apply the linear projection 397
and sigmoid function to dynamically assign weights across 398
different granularities. The weighted summation is then 399
conducted to output the compatibly integrated features, i.e., 400

F3
m =

Nc∑
l=1

σ
(
Wsf · γl

m + bsf

)
· γl

m. (15) 401
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Stage Task Dataset #Emos Num AC

Pre-training – Unlabeled Hybrid – 1,360,531 Mix

Supervised – CEA Labeled Hybrid 13 31,218 Mix
Post-pre-training – MER Labeled Hybrid 3 1,007 Lab

CEA MAFW [42] 11 9,172 Wild
43 8,996 Wild

CEA DFEW [34] 7 11,697 Wild
CEA MER-MULTI [38] 6 3,784 Wild
CEA MER24-T&V [39] 6 5030 Wild
CEA IEMOCAP [4] 4 5,531 Lab

CEA CREMA-D [6] 6 7,442 Lab
Targeted 4 4,896 Lab

Fine-tuning CEA RAVDESS [44] 8 1,440 Lab
CEA MSP-IMPROV [5] 4 7,798 Lab
DEA Werewolf-XL [79] 3 14,632 Lab
DEA AVCAffe [55] 2 58,112 Wild
MER SAMM [16] 3 133 Lab
MER CASME II [76] 3 145 Lab
MER SMIC [37] 3 164 Lab
MER CAS(ME)3 [36] 3 943 Lab
MER MMEW [3] 3 300 Lab

Table 1. The statistics of data utilized for three training stages.
AC: Acquisition Condition. Mix: Wild & Lab Environments.

Afterwards, we deploy MHCA followed by FFNs to fa-402
cilitate the complementarily correlated information learning403
with FNc

av under feedback manner, which can be given as:404

F4
m = MHCA(LN(F3

m),LN(FNc
av )) + F3

m. (16)405

Finally, we utilize poolings along the token dimension to406
reshape features as F4

m ∈ RC , followed by concatenation407
and a specific linear layer to output the final results Ff of408
the overall tuned model. For the downstream classification409
and regression tasks, we respectively use the cross-entropy410
and mean square error losses. During pre-training, the main411
difference is the visible token number of input features.412

3.5. Dual Scaling and Progressive Training413

Model Scaling. The model capacity is the foremost force414
in improving performance. Following the scaling behaviors415
of [60, 62], we scale the capacity of AVF-MAE++ by con-416
structing uni-modal encoders of varying dimensions, atten-417
tion heads, and depths, leading to three versions (i.e., Base,418
Large, and Huge), which are detailed in the supplementary419
material. The stacked number of our IAV-CL Module re-420
mains constant. Besides, we adhere to [60, 67] by using421
lightweight vanilla ViT [17] as decoder, while keeping the422
decoder capacity consistent across different model versions.423
Data Scaling. We construct an unlabeled hybrid cross-424
linguistic facial video dataset to better support audio-visual425
MAE pre-training, originating from CN-Celeb series [20],426
MER2024 [39], VoxCeleb2-dev [15], AV-Speech [18], and427
CelebV-HQ [88], as illustrated in Tab. 1. After collection,428
we filter and crop videos using the pre-processing pipeline429
from [7] to reduce redundancy, resulting in a hybrid pre-430
training dataset with 1.36M clips. To our knowledge, this431
is the largest dataset utilized for AVFA self-supervised pre-432
training. More details are shown in supplementary material.433
Progressive Adaptation Training. Compared to [62, 67],434
the non-overlapping data distributions between the pre-435

training and fine-tuning stages in AVFA, along with the lim- 436
ited fine-tuning data, lead to the adaptation and overfitting 437
challenges, restricting the full potential of pre-trained mod- 438
els. To tackle this, inspired by [2, 67], we propose the pro- 439
gressive semantics injection (PSI) strategy, which incorpo- 440
rates supervised semantic signals from multiple sources to 441
help pre-trained models gradually adapt to the downstream 442
tasks, leading to a three-stage training pipeline. Concretely, 443
we first conduct self-supervised pre-training on the unla- 444
beled hybrid dataset. We then perform supervised post-pre- 445
training on the labeled hybrid datasets to inject downstream 446
semantics into pre-trained models. As displayed in Tab. 1, 447
the labeled hybrid datasets are built by merging datasets for 448
different downstream tasks and aligning their label seman- 449
tics. Finally, we fine-tune models on targeted datasets to 450
transfer the general semantics to task-specific knowledge. 451

4. Experiments 452

4.1. Downstream AVFA Tasks 453

To demonstrate the effectiveness and generalizability of the 454
AVF-MAE++, we conduct extensive experiments on multi- 455
ple datasets for three key AVFA tasks, as shown in Tab 1. 456
Categorical Emotion Analysis (CEA). CEA is the most 457
common AVFA task, aiming to classify each sample into a 458
predefined category. Following [60], we conduct detailed 459
analysis on this task to explore the scaling properties of 460
audio-visual MAE. We employ UAR, WAR, and WA-F1 as 461
the metrics to evaluate performance across ten datasets. 462
Dimensional Emotion Analysis (DEA). DEA continu- 463
ously represents the affective states, leading to more fine- 464
grained emotional annotations. Following [60, 61], we uti- 465
lize AVCAffe [55] and WereWolf-XL [79] to verify the su- 466
periority of AVF-MAE++. The evaluation metrics for [55] 467
and [79] are WA-F1 and PCC, respectively. Besides, we 468
have not built the labeled hybrid dataset for DEA since the 469
disalignments of continuous emotional annotations. 470
Micro-Expression Recognition (MER). This task recog- 471
nizes brief and subtle facial expressions that reveal hidden 472
emotional states. In this paper, we deploy the UF1 metric to 473
evaluate performance on five representive MER datasets. 474

4.2. Main Results 475

We transfer the pre-trained representations of AVF-MAE++ 476
on 17 targeted datasets across three downstream AVFA 477
tasks, as shown in Tab. 2. More comparisons and the imple- 478
mentation details are provided in supplementary material. 479
CEA. We compare with state-of-the-art CEA methods on 480
ten datasets. We draw the following observations: (1) The 481
SSL methods exhibit better performance compared to su- 482
pervised methods due to their powerful and efficient ca- 483
pabilities in learning effective AVFA representations. (2) 484
Audio-visual SSL methods generally surpass uni-modal 485
SSL ones by leveraging the complementary correlations of 486
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(a) MAFW (11-class)

Method SSL Mod. #PS UAR WAR

HuBERT [30] ✓ A 95 25.00 32.60
WavLM-Plus [9] ✓ A 95 26.33 34.07
DFER-CLIP [85] ✓ V 153 39.89 52.55
SVFAP [61] ✓ V 78 41.19 54.28
MAE-DFER [58] ✓ V 85 41.62 54.31
UniLearn [11] ✓ V 101 43.72 58.44

T-MEP [81] × A+V 61 37.17 51.15
MMA-DFER [14] ✓ A+V – 44.25 58.45
HiCMAE [60] ✓ A+V 81 42.65 56.17
AVF-MAE++ (B) ✓ A+V 169 43.10 57.50
AVF-MAE++ (L) ✓ A+V 303 45.36 59.13
AVF-MAE++ (H) ✓ A+V 521 46.05 60.24
FineCLIPER [8] ✓ T+V 20 45.01 56.91

(b) DFEW

Method SSL Mod. #PS UAR WAR

WavLM-Plus [9] ✓ A 95 37.78 44.64
S2D [10] ✓ V 9 65.45 74.81
MAE-DFER [58] ✓ V 50 63.41 74.43
UniLearn [11] ✓ V 101 66.80 76.68

AMH [77] × A+V – 54.48 66.51
HiCMAE [60] ✓ A+V 81 63.76 75.01
AVF-MAE++ (B) ✓ A+V 169 63.74 75.42
AVF-MAE++ (L) ✓ A+V 303 65.14 76.24
AVF-MAE++ (H) ✓ A+V 521 66.88 77.45
FineCLIPER [8] ✓ T+V 20 65.98 76.21

(c) MER-MULTI

Method SSL Mod. #PS UAR WA-F1

HuBERT-CH [78] ✓ A 95 – 61.16
ResNet-FER [27] × V 26 – 57.44
MANet [86] × V 51 – 56.19

[27] + [78] ✓ A+V 121 – 69.11
[86] + [78] ✓ A+V 146 – 70.32
HiCMAE [60] ✓ A+V 81 64.15 71.33
AVF-MAE++ (B) ✓ A+V 169 64.87 69.56
AVF-MAE++ (L) ✓ A+V 303 66.34 70.79
AVF-MAE++ (H) ✓ A+V 521 68.20 72.26

(d) MAFW (43-class)

Method SSL Mod. #PS UAR WAR

HuBERT [30] ✓ A 95 5.36 20.70
WavLM-Plus [9] ✓ A 95 5.51 21.09
Former-DFER [84] × V 18 10.21 32.07
T-MEP [81] × V 5 9.50 31.54

T-ESFL [42] × A+V – 9.93 34.67
T-MEP [81] × A+V 61 13.22 36.58
HiCMAE [60] ✓ A+V 81 13.29 37.36
AVF-MAE++ (B) ✓ A+V 169 15.42 43.41
AVF-MAE++ (L) ✓ A+V 303 15.59 43.93
AVF-MAE++ (H) ✓ A+V 521 17.25 43.83

(e) MER24-T&V

Method SSL Mod. #PS WAR WA-F1

Whisper [53] × A 1550 63.27 63.23
DINOv2 [49] ✓ V – 59.57 58.44
VideoMAE [62] ✓ V 86 64.93 64.50

HiCMAE [60] ✓ A+V 81 70.95 70.18
AVF-MAE++ (B) ✓ A+V 169 72.11 71.24
AVF-MAE++ (L) ✓ A+V 303 72.33 71.64
AVF-MAE++ (H) ✓ A+V 521 72.28 71.75

(f) CREMA-D (6-class)

Method SSL Mod. #PS UAR WAR

HuBERT [30] ✓ A 95 72.72 72.57
WavLM-Plus [9] ✓ A 95 73.34 73.39
SVFAP [61] ✓ V 78 77.31 77.37
MAE-DFER [58] ✓ V 85 77.33 77.38

VQ-MAE-AV [54] ✓ A+V 30 – 80.40
HiCMAE [60] ✓ A+V 81 84.91 84.89
AVF-MAE++ (B) ✓ A+V 169 85.10 85.09
AVF-MAE++ (L) ✓ A+V 303 85.69 85.60
AVF-MAE++ (H) ✓ A+V 521 86.02 85.95

(g) CREMA-D (4-class)

Method SSL Mod. #PS UAR WAR

AW-HuBERT [63] ✓ A+V 103 93.65 93.65
HiCMAE [60] ✓ A+V 81 94.00 94.13
AVF-MAE++ ✓ A+V 521 94.82 94.92

(h) MSP-IMPROV

Method SSL Mod. #PS UAR WAR

FAV-HuBERT [63] ✓ A+V 103 61.05 68.35
HiCMAE [60] ✓ A+V 81 65.78 74.95
TAPT-HuBERT [63] ✓ A+V 103 63.95 70.46
AW-HuBERT [63] ✓ A+V 103 65.72 71.80
AVF-MAE++* ✓ A+V 521 70.05 76.07

(i) RAVDESS

Method SSL Mod. #PS UAR WAR

HuBERT [30] ✓ A 95 74.15 74.37
WavLM-Plus [9] ✓ A 95 75.28 75.36
SVFAP [61] ✓ V 78 75.15 75.01
MAE-DFER [58] ✓ V 85 75.91 75.56

VQ-MAE-AV [54] ✓ A+V 30 – 84.80
HiCMAE [60] ✓ A+V 81 87.96 87.99
AVF-MAE++ ✓ A+V 512 87.44 87.57

(j) IEMOCAP

Method SSL Mod. #PS UAR WAR

Wav2vec 2.0 [1] ✓ A 95 69.88 67.32
HiCMAE [60] ✓ A+V 81 68.21 68.36
AVBERT [35] ✓ V 37 – 45.80
AVF-MAE++ (L) ✓ A+V 303 69.86 71.65
AVF-MAE++ (H) ✓ A+V 512 72.71 73.83

(k) AVCAffe

Method SSL Mod. #PS Arousal Valence

VGG + MC3 [55] × A+V 47 38.90 41.70
HiCMAE [60] ✓ A+V 81 43.18 44.20
AVF-MAE++ (B)* ✓ A+V 169 43.02 46.93
AVF-MAE++ (L)* ✓ A+V 303 45.21 47.83
AVF-MAE++ (H)* ✓ A+V 521 47.25 49.66

(l) Werewolf-XL

Method SSL Arousal Valence Dominance

eGeMAPS [19] × 23.45 8.08 31.15
VGGFace [51] × 7.24 62.96 14.30
SVFAP [61] ✓ 23.51 67.11 34.61
HiCMAE [60] ✓ 33.74 69.23 40.66
AVF-MAE++* ✓ 44.99 72.19 52.35

Table 2. Performance comparisons of AVF-MAE++ with state-of-the-art CEA and DEA methods on twelve datasets. Mod.: Modality.
#PS: Parameters in millions. A: Audio. V: Video. A+V: Audio + Video. *: The results are obtained without progressive training since the
disalignment of label semantics. –: Unavailable results. We highlight the best performance in bold and underline the second performance.

Method SAMM CASME II SMIC CAS(ME)3 MMEW

STSTNet [40] 65.88 83.82 68.01 37.95 80.37
µ-BERT [48] – 90.34 85.50 56.04 –

CapsuleNet [65] 62.09 70.68 58.20 – 67.62
EMR [41] 77.54 82.93 74.61 36.13 81.49

RCN-A [74] 76.01 85.12 63.26 39.28 –
LBP-TOP [83] 39.54 70.26 20.00 21.78 64.23

HTNet [70] 81.31 95.32 80.49 57.67 84.33
FeatRef [87] 73.72 89.15 70.11 34.93 82.11

AVF-MAE++ (B) 81.58 93.58 83.23 63.18 83.76
AVF-MAE++ (L) 82.53 94.03 83.79 67.88 83.41
AVF-MAE++ (H) 81.62 94.11 83.55 65.34 84.33

Table 3. Performance comparisons of AVF-MAE++ and state-of-
the-art MER methods in terms of UF1 (%) on five datasets.

cross-modal features to boost performance. For instance,487
AVF-MAE++ exceeds UniLearn [11], which pre-trains on488
both images and videos, by 2.33% UAR and 1.80% WAR489
on MAFW (11-class). (3) As the capacity of AVF-MAE++490
increases, the performance gains from Base to Large are491
steadily obvious across all the datasets. However, the gains492
from Large to Huge are much smaller on certain datasets,493

aligning with the trends in general vision domains [67, 75]. 494
(4) Despite the PSI strategy’s efforts to mitigate overfitting, 495
performance still declines slightly on smaller target datasets 496
(e.g., RAVDESS [44]), indicating that large models are par- 497
ticularly prone to overfitting on limited tuning data, which 498
remains a crucial challenge for further improvements. 499

DEA. We follow the analysis pipeline of HiCMAE to con- 500
duct comparisons with previous methods on two datasets, 501
as shown in Tab. 2. It can be clearly seen that AVF-MAE++ 502
outperforms baselines by large margins. Specifically, AVF- 503
MAE++ (H) exceeds the previous best results by 4.07% 504
WA-F1 in Arousal and 5.46% WA-F1 in Valence on AV- 505
CAffe [55]. Besides, our method exhibits the largest gain 506
of 11.69% PCC across dimensions on Werewolf-XL [79]. 507

MER. To verify the general applicability of AVF-MAE++, 508
we further evaluate it on the MER task. Different from the 509
above two tasks, MER datasets generally lack audio inputs. 510
We thus only utilize the pre-trained video encoder to con- 511
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Method Time Speedup #PS MAFW MER24

HiCMAE [60] 115.45h – 99 56.17 70.95
Dual masking + Vanilla LGI-Former 77.45h 1.49× 142 55.11 69.42
Dual masking + Improved LGI-Former 79.07h 1.46× 163 56.12 70.36

Table 4. Ablation comparisons of our dual masking & modal-
ity encoder (i.e., Improved LGI-Former) with HiCMAE [60]. We
only report results in terms of WAR (%). MER24: MER24-T&V.

DiER
Units

HAFE
Layer

MAFW MER24-T&V IEMOCAP

UAR WAR WAR WA-F1 UAR WAR

× × 41.89 56.31 70.21 69.62 67.46 69.33
✓ × 42.58 56.81 70.97 70.26 68.56 70.02
× ✓ 42.55 56.77 70.65 70.13 68.63 69.86
✓ ✓ 42.96 57.02 71.40 70.72 68.86 70.45

Table 5. Ablation study on the components of IAV-CL Module.

struct the overall training pipeline on five datasets. As illus-512
trated in Tab. 3, AVF-MAE++ achieves competitive results,513
exhibiting the largest improvement of 10.21% UF1 com-514
pared to HTNet [70] on CAS(ME)3 [36]. Moreover, we find515
that on certrain datasets, there exist sharper performance de-516
clines when scaling model from Large to Huge, impressing517
the overfitting conclusions drawn from CEA task.518

4.3. Ablation Studies519

To investigate the crucial design factors of AVF-MAE++,520
we systematically conduct in-depth ablation studies on521
MAFW (11-class) [42] and MER24-T&V [39] datasets.522
Impact of Dual Masking & Improved Modality Encoder.523
Tab. 4 presents the influence of our audio-visual dual mask-524
ing strategy and improved modality encoder on AVFA per-525
formance. Specifically, we employ AVF-MAE++ (B) to526
fairly compare with the audio-visual encoder-only mask-527
ing strategy and vanilla ViT [17] of HiCMAE-B [60] on528
the VoxCeleb2-dev [15] pre-training dataset utilizing 100529
epochs. We determine that both our new dual masking strat-530
egy and the introduced modality encoder can make positive531
difference on computational efficiency, exhibiting 1.46×532
speedup with competitive outcomes.533
Evaluation on components of IAV-CL Module. We eval-534
uate the effectiveness of the DiER Units and HAFE Layer535
in IAV-CL Module using AVF-MAE++ (B), as displayed in536
Tab. 5. We conduct pre-training on the built hybrid dataset537
and further fine-tune models on IEMOCAP [4]. Note that538
when conducting ablative test on HAFE Layer, we deploy539
the original fusion modules of HiCMAE [60] to construct540
the hierarchical integration manner. From Tab. 5, we con-541
clude that the coupling use of DiER Units and HAFE Layer542
leads to the highest improvement, indicating their effective-543
ness in correlations capture of intra- and inter-modalities.544
Ablation Study on the Number of DiER Units. To deter-545
mine the optimal stacked number of the DiER Units, we546
conduct ablation studies at different number using AVF-547
MAE++ (L), as presented in Tab. 6. The results indicate548
that the stacked number is not directly proportional to per-549
formance gains, as too many units lead to overly dense in-550
teractions, resulting in increased complexity and instability.551

Stacked
Number

= 1 = 2 = 4

UAR WAR UAR WAR UAR WAR

MAFW 43.07 56.83 43.22 57.69 43.14 57.05
MER24-T&V 61.57 69.98 62.46 71.09 62.11 70.83

Table 6. Ablation study on the stacked number of DiER Units.

Method
Pre-training

Dataset
MAFW MER24-T&V

UAR WAR WAR WA-F1

AVF-MAE++ (B) VoxCeleb2-dev 42.80 56.64 70.93 70.51
AVF-MAE++ (B) Unlabeled Hybrid 42.96 57.02 71.40 70.72

∆Metrics – + 0.16% + 0.38% + 0.47% + 0.21%
AVF-MAE++ (L) VoxCeleb2-dev 42.67 57.01 70.21 69.02
AVF-MAE++ (L) Unlabeled Hybrid 43.22 57.69 71.09 70.32

∆Metrics – + 0.55% + 0.68% + 0.88% + 1.30%
AVF-MAE++ (H) VoxCeleb2-dev 43.59 57.22 70.45 69.42
AVF-MAE++ (H) Unlabeled Hybrid 44.02 57.79 71.23 70.41

∆Metrics – + 0.43% + 0.57% + 0.78% + 0.99%

Table 7. Ablation comparisons on the pre-training data scaling.
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Figure 3. Ablation explorations on the progressive training.

Effectiveness on Data Scaling. As shown in Tab. 7, we as- 552
sess the effects of pre-training data scaling on AVF-MAE++ 553
using VoxCeleb2-dev [15] and our unlabeled hybrid dataset. 554
We figure out that data scaling consistently boosts perfor- 555
mance across all the metrics, emphasizing the importance 556
of data size and diversity for AVFA mask autoencoding. 557
Contribution of the PSI Strategy. We investigate the con- 558
tribution of our introduced PSI strategy, as illustrated in 559
Fig. 3. The outcomes indicate that AVF-MAE++ demon- 560
strates superior performance, highlighting its effectiveness 561
in smooth adaptation from pre-training to fine-tuning. 562

5. Conclusion and Discussions 563

In this paper, we aim to investigate the scaling properties of 564
audio-visual MAE for AVFA. Thanks to our core designs of 565
dual masking strategy, model architecture, and progressive 566
training pipeline, we are able to successfully train the first 567
hundred-million audio-visual MAE denoted AVF-MAE++ 568
on the currently largest AVFA pre-training dataset. Exten- 569
sive experiments across 17 datasets verify the superiority of 570
the AVF-MAE++. Our work emphasizes that audio-visual 571
masked autoencoders are scalable and general AVFA repre- 572
sention learners. We hope this work can serve as a founda- 573
tion and inspire more research on AVFA pre-training. 574

Despite promising results, challenges persist. Overfitting 575
on small datasets remains a clear bottleneck even with our 576
PSI strategy, and performance seems to saturate on certain 577
datasets as the model capacity grows. Moreover, our data 578
scaling is limited compared to general vision domains [75], 579
leaving pre-training on amplified AVFA data unexplored. 580
We focus on tackling these challenges in the future plans. 581
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