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Abstract—Deep image watermarking embeds identification
data into images to facilitate source tracking. However, existing
schemes are primarily designed for single-stage transmission
scenarios, and in practical multi-stage distribution requirements,
current methods degrade image quality and reduce watermark
extraction accuracy. In this paper, we introduces WATERUP, a
deep watermark updating framework. WATERUP automatically
updates watermark information as the image is transmitted, pre-
serving image quality while accurately recording the transmission
path for traceability. The core of WATERUP is a flow-based
encoder-decoder (FED), which utilizes a forward and backward
network to enable efficient watermark updating with minimal
computational and storage demands. Experimental results show
that WATERUP outperforms state-of-the-art methods, maintain-
ing high visual quality with a PSNR exceeding 38 dB across
multiple transmissions.

Index Terms—Watermarking, Watermark Updating

I. INTRODUCTION

Nowadays, the transmission of images has become increas-
ingly convenient, creating opportunities for attackers. When
images containing sensitive content are leaked or attacked,
the resulting economic losses can be substantial. A study by
IBM and the Ponemon Institute documented a 12% increase in
data breach costs over the past five years [1]. While complete
prevention of data breaches is unrealistic, a more practical
approach is to quickly trace the source of breaches and mini-
mize the associated losses. Digital watermarks, which embed
invisible information into data, serve to protect copyright and
track the source. They significantly improve the ability to
respond to data leakage incidents. Current watermarking tech-
nologies [2], [3] are primarily designed for single-stage data
distribution, where images are transmitted without intermedi-
aries, as depicted in Fig. 1. However, in multi-stage scenarios,
such as in government or enterprise workflows, images are
routed through multiple intermediaries. Consequently, water-
marks must be re-embedded with each image transmission.
As illustrated in Fig. 1, repeated embedding degrades both
data quality and usability and results in earlier watermarks
being interpreted as noise during subsequent extractions. These
challenges result in current solutions being unable to meet the
traceability requirements in multi-stage distribution.

To meet traceability requirements in multi-stage distribution
scenarios, we introduce the concept of watermark updating.
Which involves automatically updating watermark information
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Fig. 1: Comparison of current watermarking schemes and our
proposed scheme in multi-stage distribution system.

as digital content is transferred to another terminal, while
preserving data quality. Specifically, the system first removes
the existing watermark and then embeds new watermark
information, including the identities of both the sending and
receiving terminals. Traditional watermarking schemes, such
as reversible watermarking [4], [5], allow the recovery of the
original cover image without distortion, thereby supporting
watermark updating. However, these traditional approaches,
which rely on handcrafted features for embedding and extrac-
tion, exhibit weaknesses in both invisibility and robustness
against complex distortions. Deep learning-based watermark-
ing schemes [6], on the other hand, can fully leverage image
features and manage more complex distortions. Nonetheless,
the crucial need for watermark updating has not been ade-
quately addressed in these deep-learning-based methods.
Current deep learning technology most closely related to
watermark update is watermark removal, which treats multiple
watermarks as noise to eliminate their impact [7]. However,
since watermarks are adaptively embedded and differ from
common types of noise, such methods may lead to a lot
of quality loss in the reconstructed images. As illustrated
in Fig. 1, integrating these techniques with watermarking
schemes for multi-stage distribution fails to achieve the desired
outcomes. Moreover, implementing watermark update based
on these solutions requires the integration of an additional wa-
termark embedding model, which imposes extra computational
and storage demands on regular office equipment. To address
these challenges, we present WATERUP. WATERUP adopts a
flow-based network architecture to facilitate the embedding
and extraction of watermarks. Unlike traditional approaches,
WATERUP innovatively integrates watermark embedding and
removal into a single network. Specifically, the network’s
forward process performs watermark embedding, while the
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Fig. 2: The overall framework of our proposed WATERUP.

backward process handles watermark removal. This design
enables WATERUP to leverage shared parameters, allowing the
knowledge of watermark embedding to enhance the quality of
original image restoration during watermark removal. Addi-
tionally, the bidirectional flow within a single model signifi-
cantly reduces computational and storage demands. We con-
ducted extensive experiments, demonstrating that WATERUP
effectively meets the requirements for watermark updates and
outperforms all existing solutions.

The contributions of this paper are as follows:

o To the best of our knowledge, this is the first work to
propose watermark updating, specifically addressing the
tracing needs of multi-stage distribution scenarios.

o« We proposes a watermark updating framework called
WATERUP. This framework is implemented using a flow-
based model and a scalable noise layer, achieving high-
performance watermark updating with strong scalability.

« Extensive experimental results demonstrate that the pro-
posed scheme outperforms state-of-the-art deep learning-
based watermarking methods in terms of visual quality
and robustness. As a result, effective leakage traceability
is supported in multi-stage distribution scenarios.

II. RELATED WORK
A. Single-stage Watermarking schemes

Current watermarking schemes prioritize both robustness
and invisibility, achieving great performance in single-stage
distribution scenarios. Recently, several deep learning-based
watermarking schemes have been proposed. Zhu et al. [6]
introduced the END architecture, which effectively ensures
robustness against various image processing techniques by
incorporating different noise layers. Jia er al. [2] achieved
robustness against JPEG compression by alternately training
the network with both “real JPEG” and ‘“simulated JPEG”
noise. And Fang et al. [3] proposed a noise layer named
PIMoG which simulates the most impactful distortions in a
differentiable manner. Additionally, Fang er al. [8] introduced
a flow-based robust watermarking framework that ensures a
tight coupling between the encoder and the decoder, resulting

in high visual quality of watermarked images. However, since
the aforementioned watermarking schemes cannot remove
watermarks during extraction, they are unsuitable for multi-
stage transmission scenarios.

B. Invisible Watermark Removal

Removal attacks aim to completely remove watermarks
from watermarked images. A common approach to removing
invisible watermarks is to treat the watermark as a type of
noise added to the image. Attack methods based on this
approach aim to preserve the visual quality of the attacked
image. Quiring et al. [9] proposed a black-box attack method
based on adversarial machine learning, which seeks to prevent
watermark detection rather than removal. Additionally, Zhao et
al. [10] presented a universal attack pattern and experimentally
demonstrated that using the diffusion model yields the most
effective attack results. Similarly, Li et al. [7] introduced a
distance-guided conditional diffusion model for watermark
removal, which reduces extraction accuracy to below 50%
and reconstructs images that closely resemble the originals.
However, in multi-stage distribution scenarios, where multiple
instances of watermark removal are involved, the inevitable
decline in visual quality cannot be overlooked.

III. THE PROPOSED WATERUP
A. Overview

The system overview of WATERUP is illustrated in Fig. 2.
WATERUP consists of two primary components: a trainable
flow-based encoder-decoder (FED) and a scalable noise layer
(SNL). With each image transmission, WATERUP updates a
new watermark containing the identity information of both
parties involved in the transmission. This enables traceability
in the event of information leaks.

The FED is composed of multiple invertible neural blocks
and utilizes the same parameters for both forward encoding
and backward decoding. In the forward process, the watermark
message M is embedded to the cover image I,, producing the
embedded image I.,, and a redundancy matrix RY. Then SNL
effectively distorts the watermarked image I.,, and provides



the noisy image I,, for decoder training. In the backward
process, the FED takes the noisy image I,,, and the all-zero
matrix R as input, and decodes them to obtain the extracted
message M® and the recovered image I,... Leveraging the
parameter-sharing mechanism, the image restoration process
can effectively utilize the parameters knowledge from water-
mark embedding to achieve higher-quality image recovery.

Image information leakage often occurs through screen-
shooting or direct forwarding from the local machine. To
address this, we designed the SNL layer to simulate the image
distortions caused by these two methods, thereby enhancing
the robustness of watermark extraction. Specifically, the SNL
consists of a Screen-Shooting Layer and an Identity Layer.
The former simulates distortions encountered during screen
capturing, while the latter simulates legitimate transmission
without visual degradation. During training, one noise layer is
randomly chosen from the SNL for each batch.

B. Flow-based Encoder and Decoder

As aforementioned, the FED consist of n invertible neural
blocks. The structure of the i” reversible neural block is
shown in Fig. 3. Each block comprises an up-sub-network
U; and two down-sub-networks D} and D?. The fundamental
building block of each sub-network consists of six “Con-
vLeakyReLU” blocks, as detailed in Fig. 2. The aim of U;
is to up-sample m; € R"***! to the same size as the image
I, € REXWx3 And the down-sub-networks aim to down-
sample z;,, € RTXW>3 (o the same size as m;.

For the " invertible neural block in the forward-encoding
process, the inputs are m; and x;, and the outputs are m;
and z;11. The details can be represented by follows:

Tiv1 = x; + Ui(my),

(D
mit1 =m; ® exp(Df (zi11)) + DF (wi41),

where ® indicates the dot product operation. After the last
invertible neural block, we can obtain m,,; as the redundant
information R/, and ZTp41 as the watermarked image I.p,.

In the backward-decoding process, the information flows
are from the " invertible neural block to the (i — 1)™
invertible neural block, as shown in Fig. 3. For the first
block in backward process, the inputs are an all-zero matrix
R € RM™wx1 and the noisy image I,,, and the outputs
are m/n and r,. For the the i"* block, the process can be
represented by the following equations:

mj = (mj,, — D}(riz1)) @ exp(—=D}(rit1)),
Ty =Ti+1 — Uz(m;)

2

After the last invertible neural block in the backward-
decoding process, the output m/ is obtained as the extracted
watermark M ", and r; is obtained as the recovered image I,.,
which will be embedded with new message during watermark
updating. It should be noted that an all-zero matrix is used
here to ensure blind extraction, which implies that no prior
information other than the I, is needed for decoding.

Fig. 3: The structure of the i invertible neural block.
C. Scalable Noise Layer

As previously mentioned, SNL includes several noise layers,
one of which is the Identity Layer, which performs an identity
transformation on the input image. For the Screen-shooting
Layer, PIMoG [3] is adopted to simulate distortions occurring
during the screen-shooting process. It encapsulates the primary
distortions encountered into three main components: perspec-
tive distortion, illumination distortion, and moiré distortion.
A differentiable formulation is proposed for each distortion
type to approximate its effects. The complete noise layer
comprises simulated perspective distortion, simulated illumi-
nation distortion, simulated moiré distortion, and an additional
Gaussian noise layer that represents the remaining distortions.
Robustness against other distortions can also be achieved by
incorporating additional noise layers into the SNL.

D. Watermark Updating

The concept of watermark updating is introduced to mitigate
the impact of multiple watermarks on the quality of image.
This process can be succinctly summarized as first removing
the previous watermark information and then embedding a new
watermark. In multi-stage distribution scenarios, images pass
through several intermediary points within a system, forming a
transmission chain. For the j’h point on the transmission chain,
it receives image I¢p,;_, embedded with message M; 1 from
the (j — 1)™ point and then send image I.,,, embedded with
message M; to the (j + 1)™ point. The process of updating
watermark information can be formulated as follows:

Iem, = Encode(My,1.,),
Iem; = Encode(Mj, 1.,) 3)
= Encode(M;, Decode(Iem,_,)),

while Encode and Decode are the forward-encoding process
and backward-decoding process of the framework in Fig. 2.

E. Loss Function

As noted, two noise layers simulate different scenarios:
the Identity Layer for watermark updating and the Screen-
shooting Layer for leakage traceability. The loss functions for
these scenarios differ. For traceability, the total loss function
includes image loss and message loss to ensure invisibility
and robustness. In watermark updating, the total loss also
incorporates recovered image loss to maintain the quality of
the watermark-free image.
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1) Image Loss: The aim of forward-encoding process is
to embed the watermark M into the cover image I, to
generate the watermarked image I.,,. To achieve invisibility,
the watermarked image is required to be close to the cover
image, with the image loss defined as follows:

Ly, =MSE(Io, Iem), ()]

L1, = LPIPS(I,,Icp,). (5)

Here, We used two methods, MSE (Mean Squared Error)
and LPIPS (Learned Perceptual Image Patch Similarity), to
calculate the differences between cover images and water-
marked images. The LPIPS function [11] measures perceptual
image similarity by using neural networks to compare feature
differences. A7, and Aj, are the weights.

2) Message Loss: The backward-decoding process aims to
extract watermark information M “* from the noisy image I,,,.
To achieve robustness, the message loss Ly, is defined as:

L; = MSE(M, M. ()

3) Recovered Image Loss: Since the recovered image will
be embedded with a new message during watermark updating,
it should ideally be consistent with the original image. This
can be achieved by inputting both the redundant informa-
tion matrix and the watermarked image into FED during
the backward-decoding process. However, the storage and
transmission of redundant information matrix are impractical.
Therefore, a restriction is imposed on the recovered image to
ensure it closely approximates the cover image, as follows:

Lr = LPIPS(I,, I,.). 7)

LPIPS measures the difference between cover image [, and
recovered image I,., as the focus on higher-level features by
perceptual loss aids in recovering the watermark-free image.

4) Total Loss: The total loss L;,tq; is @ sum of image loss,
message loss and recovered image loss. For the purpose of
traceability, the total loss is defined as follows:

Liotat = A L1, + AL, + AL ¥
For watermark updating, the total loss is defined as:
Liotat = A0 L1 + AL, + ALy + ArLR, &)

where Ar,, Ar,, Ay and Ap are the weights.
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under multiple rounds watermark updating.
IV. EXPERIMENTS
A. Experimental Setup

1) Datasets: To train the entire network, the DIV2K dataset
[12], which contains high-quality images for image super-
resolution tasks, is selected as the training dataset. And the
classical USC-SIPI image set [13], known for its diverse range
of grayscale and color images, is used as the testing dataset.

2) Metrics: To evaluate the visual quality of the water-
marked image, PSNR, SSIM, and LPIPS are utilized as the
primary metrics. Higher values of PSNR and SSIM denote
improved visual quality, while a higher LPIPS value signifies a
reduction in visual quality. For assessing robustness, extraction
bit accuracy is used as the metric, with higher accuracy
indicating greater robustness.

3) The Baselines: The proposed scheme is compared with
four traditional deep learning-based methods, MBRS [2],
HiDDeN [6], PIMoG [3] and FIN [8]. For the strength factor
in MBRS [2], we set it to 1 here. And for FIN [8], the model is
trained with screen-shooting noise layer for better comparison.
We also implement watermark updating by watermark removal
attack [14] (WR) for comparative analysis.

4) Implementation Details: The framework is implemented
by PyTorch and executed on NVIDIA RTX 3080ti [15], [16].
The width W and height H of the image are set to 128,
respectively, and the length of the watermark message is set
to 64 bits, i.e., h and w are both set as 8. For parameter
optimization, Adam is applied. During training, the noise layer
is randomly chosen from the SNL for each batch, and the
corresponding loss function is used to compute the loss. To
balance invisibility and robustness, the training process is
divided into two phases, with each phase training for 500
epochs. In the first phase, the parameters Ar,, Ar,, Ays and
Ag are set to 0.75, 0, 10 and 0.01, respectively. In the second
phase, Ay, is adjusted to 1.75 and Ag is adjusted to 0.5, while
the remaining parameters are maintained unchanged.

B. Performance under Watermark Updating

In this section, we simulate the process of watermark
updating and evaluate the visual quality and robustness of
different methods. Specifically, the embedding-extraction pro-
cess is repeated 15 times, with embedded messages randomly
sampled for each round. For our method, new messages are
embedded into the recovered images from the previous round
of extraction. As for traditional methods, since watermark-
free images cannot be produced, new messages are embedded



TABLE I: Extraction under different shooting distances.

Distance (cm) ‘ 30 40 50 60
Round-1 | 982% 972% 97.1%  97.0%
Round-2 | 98.0% 985% 98.1%  97.8%
Round-3 | 97.8% 975% 97.0%  98.1%
Round-4 | 977% 98.0% 97.3%  97.3%
Round-5 | 985% 975% 972%  97.0%
Round-6 | 974% 984% 97.1%  97.8%
Round-7 | 974% 975% 972%  97.9%

into the images output from the previous round of embedding.
We also simulate watermark updating with HiDDeN [6] and
watermark removal method based on diffusion model [7] for
comparison, referred to as WR. For WR, messages are first
embedded into the cover images and then removed to obtain
watermark-free images, into which new messages will be
embedded. For each round of watermark updating, PSNR,
SSIM, and LPIPS are utilized to evaluate the quality of
watermarked image. Additionally, the extraction accuracy is
also measured. The results are shown in Fig. 4.

From Fig. 4a, 4b, and 4c, it can be observed that high visual
quality is effectively maintained by our method, whereas a
significant decline in visual quality is evident in other methods.
Fig. 5 shows the watermarked images after 15¢h update by
different methods, providing a more intuitive demonstration
of the superior performance of the proposed method in terms
of visual quality. Up to the 15" update, the watermarked
images produced by the proposed method retained excellent
visual quality. Indeed, even after 30 rounds of updates, the
watermarked images continued to exhibit high quality, with
SSIM maintained above 0.97 and PSNR above 38. This is due
to the fact that the proposed method mitigates the impact of
multiple watermarks by updating information and preserving
the quality of the cover.

Fig. 4d shows the results of extraction accuracy. As antic-
ipated, a decrease in extraction accuracy has been observed
in other methods to varying degrees, except for MBRS [2]
and the proposed method. Although MBRS demonstrates
robustness to the impact of multiple watermarks, it exhibits
poor performance in terms of visual quality. It can also be
observed that WR performs worse than HiDDeN in Fig. 4b and
4c, which is attributed to the fact that the invisible watermark
removal attack does not achieve the expected visual quality.
Therefore, this method is not practical for watermark updating.

C. Robustness Against Screen-shooting

In this section, we will test robustness against screen-
shooting. Specifically, randomly sampled messages are embed-
ded into the images from the dataset [13], and the embedded
messages are updated 7 times. Each time, the watermarked
images are saved and subsequently displayed on the screen.
Then we use mobile phones to capture these images under
various conditions. For the captured images, detection and
perspective correction of the watermarked image in each photo
are first performed, followed by watermark extraction from the
corrected images using the decoder.

TABLE II: Comparisons of different A\r, .

Ary | 025 0.5 0.75 1 1.25
SSIM; | 09615 09685 09853 0.9769 0.9739
PSNR; |37.6785 389956 40.9490 39.0498 38.1861
LPIPS; | 0.1084 0.1095 0.1340 0.1248 0.1580

Accuracyi ‘ 100% 100% 100% 100% 100%
SSIMs |/ 0.7976  0.9787 0.7037  0.8987
PSNRis | / 25.3245 38.8124 24.445 30.8267
LPIPSys | / 2.1888 0.1792 1.9522 0.8542

Accuracyys |/ 94.87% 100%  96.54% 99.33%

TABLE III: Comparisons of different \y,.

Az, | o0 0.75 1.75 275 35
SSIM; | 0.8987 097028 09853 0.9858 0.9870
PSNRy |342170 38.0194 409490 40.9129 41.2677
LPIPS; | 25680 02551 0.1340 0.1193 0.1023
Accuracyy | 100%  100%  100%  100%  99.89%
SSIMys | 08981 09709 0.9787 09796 0.9808
PSNRy5 |34.1204 37.7199 388124 39.1044 39.5334
LPIPSys | 24720 02799 0.1792 0.1513  0.1223

Accuracyis | 100%  100%  100% 99.78% 99.89%

We mainly test the robustness in the view of shooting
distance. After displaying the watermarked images on the
screen, we use mobile phone to capture them at various
distances. The shooting distance varies from 30cm to 60cm.
As shown in TABLE I, the proposed scheme maintains a
high extraction accuracy exceeding 97% across all shooting
distances. It is also observed that the extraction accuracy does
not decrease with an increasing number of watermark updates,
indicating that the proposed scheme can achieve traceability
in the event of leakage due to screen capturing, even after
multiple transmissions. These experiments are carried out
under the device of “VA2430-FHD” and “iPhonel3”.

D. The Impact of Hyper-parameters

In this section, the impact of the weight parameters in loss
function is evaluated. Experiments are conducted by varying
one parameter at a time while the others are kept constant. The
framework is retrained with new parameters, and the PSNR,
SSIM, LPIPS, and extraction accuracy are measured for the
1% and 15" rounds of watermark updating.

From TABLE II and TABLE III, it can be observed that
the approach combined with MSE and LPIPS to image loss
is necessary. These two methods employ different calculation
approaches. MSE calculates pixel-wise differences between
images, which emphasizes precise pixel matching. LPIPS mea-
sures perceptual similarity by comparing images within the
feature space of deep neural networks, aligning more closely
with human visual perception and excelling in perceptual dif-
ferences. Consequently, a higher weight is assigned to LPIPS
to achieve improved visual quality. TABLE IV illustrates the
trade-off between invisibility and robustness. When A, is too
high, a high level of robustness may be achieved, with the
expense of reduced visual quality. Similar results can be seen
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Fig. 5: The visual example of watermarked images after 15 rounds of watermark updating.

TABLE IV: Comparisons of different Ap;.
AM | 75 10 125 15

SSIM; | 09749 09853 0.9671 0.9645
PSNR; |39.8040 40.9490 37.0977 37.6682
LPIPS; |0.0976 0.1340 0.1891 0.1558
Accuracy; ‘ 100% 100% 100% 100%
SSIMs | 09015 09787 09545 0.9301
PSNR;ys |35.0513 388124 36.5443 36.3099
LPIPS;s | 06843 0.1792 0.3286 0.4438
Accuracyis \ 96.65%  100% 100% 100%

TABLE V: Comparisons of different \g.

AR | o 0.25 0.5 0.75 1
SSIM; | 09724 09811 09853 0.9823 09818
PSNR; |38.3274 39.9105 40.9490 39.7030 39.7574
LPIPS; | 0.1812 0.1484 0.1340 0.1431 0.1446

Accuracyy | 100%  100%  100%  100%  100&
SSIM;s | 09305 09754 09787 0.9789 0.9780
PSNRi5 |357564 35.1862 38.8124 38.8779 38.8848
LPIPSy5 | 11724 0.1857 0.1792  0.1671 0.1646

Accuracyis ‘ 90%  99.89%  100% 100% 100%

in TABLE III. It is evident that a balance must be achieved
through the adjustment of these weight values.

From TABLE V, We can see that it is necessary to establish
quality constraints for I,.. It is also observed that high Agr
may result in a decrease in the visual quality of watermarked
images, as the model prioritizes minimizing the differences
between recovered images and original images over the quality
of watermarked images. Additionally, it has been found that
during the backward-decoding process, the visual quality of
recovered images is affected by the quality of the input water-
marked images. Generally, a positive correlation is observed,
as shown in TABLE V. Therefore, when determining the
values of A7, and Ag, a higher value of Ay, is preferred to
achieve high-quality watermarked images.

V. CONCLUSION

This paper introduced WATERUP, a deep learning-based
watermark updating framework for multi-stage image content
distribution. By leveraging a flow-based encoder-decoder, WA-
TERUP effectively maintains image quality and watermark
robustness across multiple transmission stages. Experimental

results show that our approach significantly outperforms exist-
ing methods, offering superior visual integrity and traceability,
and setting a new standard for watermarking in complex
distribution scenarios.

REFERENCES

[1] Kawser Ahmed, “Canada’s cyber security in a globalized environment:
Challenges and opportunities,” Routledge companion to global cyber-
security strategy, pp. 451-462, 2021.

Zhaoyang Jia, Han Fang, and Weiming Zhang, “Mbrs: Enhancing ro-
bustness of dnn-based watermarking by mini-batch of real and simulated
jpeg compression,” in ACM MM, 2021, pp. 41-49.

[3] Han Fang, Zhaoyang Jia, Zehua Ma, Ee-Chien Chang, and Weiming
Zhang, “Pimog: An effective screen-shooting noise-layer simulation for
deep-learning-based watermarking network,” in ACM MM, 2022, pp.
2267-2275.

Manikandan Vazhora Malayil and Masilamani Vedhanayagam, “A novel
image scaling based reversible watermarking scheme for secure medical
image transmission,” ISA transactions, vol. 108, pp. 269-281, 2021.
Yichao Tang, Chuntao Wang, Shijun Xiang, and Yiu-Ming Cheung,
“A robust reversible watermarking scheme using attack-simulation-
based adaptive normalization and embedding,” IEEE Transactions on
Information Forensics and Security, vol. 19, pp. 4114-4129, 2024.
Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei, “Hidden:
Hiding data with deep networks,” in ECCV, 2018, pp. 657-672.

[7]1 Xinyu Li, “Diffwa: Diffusion models for watermark attack,” in ICIICS.
IEEE, 2023, pp. 1-8.

Han Fang, Yupeng Qiu, Kejiang Chen, Jiyi Zhang, Weiming Zhang, and
Ee-Chien Chang, “Flow-based robust watermarking with invertible noise
layer for black-box distortions,” in AAAL 2023, vol. 37, pp. 5054-5061.
Erwin Quiring and Konrad Rieck, “Adversarial machine learning against
digital watermarking,” in EUSIPCO. IEEE, 2018, pp. 519-523.
Xuandong Zhao, Kexun Zhang, Zihao Su, Saastha Vasan, Ilya Gr-
ishchenko, Christopher Kruegel, Giovanni Vigna, Yu-Xiang Wang, and
Lei Li, “Invisible image watermarks are provably removable using
generative ai,” NIPS, vol. 37, pp. 8643-8672, 2024.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver
Wang, “The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR, June 2018.

Eirikur Agustsson and Radu Timofte, “Ntire 2017 challenge on single
image super-resolution: Dataset and study,” in CVPRW, 2017, pp. 1122—
1131.

U. Viterbi, “The usc-sipi image database,” http://sipi.usc.edu/database/,
1977, Accessed: JUly. 2024.

Linfeng Geng, Weiming Zhang, Haozhe Chen, Han Fang, and Nenghai
Yu, “Real-time attacks on robust watermarking tools in the wild by
cnn,” Journal of Real-Time Image Processing, vol. 17, pp. 631-641,
2020.

Xiang Zhang, Jinyang Huang, Huan Yan, Yuanhao Feng, Peng Zhao,
Guohang Zhuang, Zhi Liu, and Bin Liu, “Wiopen: A robust wi-fi-based
open-set gesture recognition framework,” IEEE Transactions on Human-
Machine Systems, 2025.

Xiang Zhang, Yan Lu, Huan Yan, Jinyang Huang, Yu Gu, Yusheng Ji,
Zhi Liu, and Bin Liu, “Resup: Reliable label noise suppression for facial
expression recognition,” IEEE Transactions on Affective Computing,
2025.

[2

—

[4

=

[5

=

[6

[

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]



