
Graphical Abstract

Security Analysis and Adaptive False Data Injection against Multi-
Sensor Fusion Localization for Autonomous Driving

Linqing Hu, Junqi Zhang, Jie Zhang, Shaoyin Cheng, Yuyi Wang, Weiming
Zhang, Nenghai Yu

GPS LiDAR IMU

Error-State Kalman Filter-

based MSF system

Security Analysis

Sensor Data Processing

Linear Error-Combination

Injection Startegy

 !"#p$%&' (#)*' +#$# ,-.'/$%0-

Highlights

Security Analysis and Adaptive False Data Injection against Multi-
Sensor Fusion Localization for Autonomous Driving

Linqing Hu, Junqi Zhang, Jie Zhang, Shaoyin Cheng, Yuyi Wang, Weiming
Zhang, Nenghai Yu

• Designed a new error analysis model for ESKF-based MSF in au-
tonomous vehicles

• Discovered a linear error-combination vulnerability exploitable in ESKF
systems

• Proposed an energy-efficient attack strategy using constrained opti-
mization

• Achieved 9% less energy usage in simulations and 18% less in real-world
datasets

• Validated method effectiveness in an autonomous vehicle with end-to-
end testing

Security Analysis and Adaptive False Data Injection

against Multi-Sensor Fusion Localization for

Autonomous Driving

Linqing Hua,b, Junqi Zhanga,b,∗, Jie Zhangc, Shaoyin Chenga,b, Yuyi Wangd,
Weiming Zhanga,b,∗, Nenghai Yua,b

aSchool of Cyber Science and Technology, University of Science and Technology of
China, Hefei, 230026, Anhui, China

bAnhui Province Key Laboratory of Digital Security, Hefei, 230026, Anhui, China
cCFAR and IHPC, Agency for Science, Technology and Research (A*STAR), Singapore

dCRRC Zhuzhou Institute Co., Ltd., Zhuzhou, 412001, Hunan, China
eTengen Intelligence Institute, Zhuzhou, 412000, Hunan, China

Abstract

Multi-sensor Fusion (MSF) algorithms are critical components in mod-
ern autonomous driving systems, particularly in localization and AI-powered
perception modules, which play a vital role in ensuring vehicle safety. The
Error-State Kalman Filter (ESKF), specifically employed for localization fu-
sion, is widely recognized for its robustness and accuracy in MSF implemen-
tations. While existing studies have demonstrated the vulnerability of ESKF
to sensor spoofing attacks, these works have primarily focused on a black-box
implementation, leading to an insufficient security analysis. Specifically, due
to the lack of theoretical guidance in previous methods, these studies have
consistently relied on exponential functions to fit attack sequences across all
scenarios. As a result, the attacker had to explore an extensive parameter
space to identify effective attack sequences, lacking the ability to adaptively
generate optimal ones. This paper aims to fill this crucial gap by conducting
a thorough security analysis of the ESKF model and presenting a simple ap-

∗Corresponding authors.
Email addresses: hlq2018@mail.ustc.edu.cn (Linqing Hu),

zhangjunqi@mail.ustc.edu.cn (Junqi Zhang), zhang_jie@cfar.a-star.edu.sg (Jie
Zhang), sycheng@ustc.edu.cn (Shaoyin Cheng), yuyiwang920@gmail.com (Yuyi
Wang), zhangwm@ustc.edu.cn (Weiming Zhang), ynh@ustc.edu.cn (Nenghai Yu)

Preprint submitted to Information Fusion November 29, 2024

proach for modeling injection errors in these systems. By utilizing this error
modeling, we introduce a new attack strategy that employs constrained op-
timization to reduce the energy needed to reach the same deviation target,
guaranteeing that the attack is both efficient and effective. This method
increases the stealthiness of the attack, making it harder to detect. Unlike
previous methods, our approach can dynamically produce nearly perfect in-
jection signals without requiring multiple attempts to find the best parameter
combination in different scenarios. Through extensive simulations and real-
world experiments, we demonstrate the superiority of our method compared
to state-of-the-art attack strategies. Our results indicate that our approach
requires significantly less injection energy to achieve the same deviation tar-
get. Additionally, we validate the practical applicability and impact of our
method through end-to-end testing on an AI-powered autonomous driving
system.

Keywords:
Error-State Kalman Filter, Multi-Sensor Fusion, Security Analysis,
Adaptive False Data Injection, Autonomous Driving, Sensor Spoofing,
Attack Strategy

1. Introduction

The rapid development and deployment of commercial autonomous driv-
ing systems [1, 2, 3] have significantly advanced the capabilities of modern
vehicles, enabling them to navigate complex environments with minimal hu-
man intervention. These systems are increasingly being integrated into every-
day transportation, promising enhanced safety, efficiency, and convenience,
such as Google’s Waymo [1] and Baidu Apollo [2]. However, alongside these
advancements, there is a growing recognition of the critical need to ensure
the security and reliability of these systems [4, 5, 6]. Autonomous vehicles
rely heavily on an array of sensors and sophisticated algorithms to accurately
perceive their surroundings and make split-second decisions. Among these
components, the localization module is particularly crucial, as it is respon-
sible for determining the centimeter level position of the vehicle in real-time
[7, 8]. Accurate localization is not only essential for safe and efficient navi-
gation but also forms the backbone of many other decision-making processes
within the vehicle including, but not limited to, the perception, planning,
and control modules. Consequently, any compromise to this module could

2

lead to serious consequences, potentially putting the safety of the vehicle and
its occupants at risk.

While the security of perception systems, such as image-based attacks on
cameras [9, 10, 11, 12, 13], has received considerable attention, the localiza-
tion module’s security has been comparatively underexplored [14]. This mod-
ule is pivotal for the vehicle’s navigation, providing high-precision and robust
localization that is indispensable for the reliable functioning of autonomous
driving systems. Despite its critical importance, existing security research
has largely focused on other areas [11, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23], of-
ten overlooking the specific challenges and vulnerabilities associated with lo-
calization. As autonomous vehicles increasingly rely on precise localization to
make real-time driving decisions, the potential consequences of compromised
localization are severe, making this an urgent area for further investigation.
The ability of an autonomous vehicle to maintain accurate positioning under
various environmental conditions and potential threats is a key determinant
of its overall safety and effectiveness.

To enhance the accuracy and robustness of localization, current autonomous
driving systems often employ Multi-Sensor Fusion (MSF) techniques [24, 25,
26, 27, 28, 29, 30, 31]. MSF integrates data from multiple sensors, such as
Inertial Measurement Units (IMU), Light Detection and Ranging (LiDAR),
and Global Positioning Systems (GPS), to provide a comprehensive under-
standing of the vehicle’s environment. This fusion of sensor data mitigates
the weaknesses of individual sensors, enhancing the overall resilience of the
localization process. By leveraging the complementary strengths of different
sensors, MSF not only improves accuracy but also provides a more reliable
estimate of the vehicle’s position, even in challenging conditions where one or
more sensors may be compromised or degraded. However, despite the robust-
ness that MSF offers, recent research has demonstrated that these systems
remain vulnerable to sensor spoofing attacks [14], particularly those targeting
the fusion process itself. For example, GPS spoofing attacks have been shown
to disrupt vehicle positioning effectively, revealing critical vulnerabilities in
black-box MSF implementations like those used in Apollo [2].

One of the widely adopted models within MSF for localization is the
Error-State Kalman Filter (ESKF) [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44]. The ESKF is specifically designed to handle the nonlinearities present
in the system and measurement models by estimating the error state rather
than the full state. This approach provides several advantages, including
improved numerical stability and the ability to handle small perturbations

3

effectively. The ESKF fuses data from IMU, LiDAR, and GPS, among other
sensors, to produce a highly accurate and robust estimate of the vehicle’s po-
sition and orientation. Despite its effectiveness in handling sensor fusion, the
security aspects of ESKF-based systems have not been thoroughly analyzed.
This lack of analysis leaves a critical gap in understanding how adversarial
attacks can exploit the ESKF’s fusion process to compromise the vehicle’s
localization accuracy and reliability.

In related studies, Nashimoto [45] was the first to analyze in detail the
behavior of fusion filter models under different sensor interference. He dis-
covered that under certain observation injections, the filtering results could
be misled. However, this study lacked a comprehensive security analysis.
Subsequently, Shen [14] successfully implemented GPS sensor spoofing at-
tacks on the MSF-based localization system in the commercial autonomous
driving platform Apollo and introduced a specific attack strategy called Fu-
sionRipper. Due to the commercial value of the localization system, it was
not open-sourced. Although Shen’s paper also touched upon the security
analysis of the localization model, it was still focused on the traditional
Kalman Filter model, and the black-box nature of the system prevented a
deeper understanding of internal error propagation. Building on Shen’s work,
Chang [46, 47] further improved the success rate of FusionRipper in differ-
ent scenarios by utilizing scene classification techniques. Additionally, Chang
provided a detailed derivation and analysis of error propagation within fusion
filter models under sensor spoofing conditions. However, like Shen, Chang’s
analysis was still centered on traditional KF models. Furthermore, Baidu’s
research [24] indicates that the localization module used in the commercial
Apollo autonomous driving system is based on an ESKF fusion filter model.
Overall, while ESKF is widely regarded for its effectiveness in fusing data
from diverse sensors, its security aspects have not been thoroughly analyzed.
This gap in the literature underscores the need for a more detailed under-
standing of fusion model vulnerabilities and the development of targeted
defense mechanisms. Specifically, due to the lack of theoretical guidance in
previous methods, exponential functions were consistently used to model at-
tack sequences across all scenarios. Consequently, attackers were forced to
navigate an extensive parameter space to identify effective attack sequences,
without the ability to adaptively generate optimal ones.

In this paper, we seek to bridge this gap by conducting a comprehen-
sive analysis of ESKF-based localization systems within the context of au-
tonomous driving security. We explore the error dynamics within the ESKF

4

framework, identifying that errors can be represented as a linear combination
of injected signals, particularly under steady-state conditions. This insight
allows us to formulate a new class of attacks that are not only effective but
also energy-efficient, providing a deeper understanding of how adversarial
inputs can be optimized to manipulate the system. Our approach offers a
more nuanced view of how ESKF-based systems can be compromised, going
beyond the limitations of black-box models and providing a clearer pathway
for developing robust countermeasures.

Building on this foundation, we propose a novel attack strategy that lever-
ages constrained optimization techniques to minimize the energy required
to achieve specific attack objectives. Unlike existing methods, such as the
state-of-the-art FusionRipper, which depends on heuristic approaches for pa-
rameter selection and requires extensive retesting across different scenarios,
our method adaptively computes optimal injection signals across various sce-
narios, ensuring consistent performance while reducing the need for manual
tuning. This adaptability makes our approach more versatile and practical
for real-world applications, where attack scenarios can vary significantly, and
the ability to quickly and efficiently adapt to new conditions is critical.

We validate the effectiveness of our approach through simulations and
real-world experiments, demonstrating that our method consistently outper-
forms FusionRipper in terms of both efficacy and efficiency. Specifically, our
approach achieves similar or greater levels of disruption with approximately
9% less energy consumption in simulated environments and about 18% less
in real-world scenarios. Finally, we conduct the end-to-end experiment on a
real vehicle equipped with a commercially available AI-powered autonomous
driving system to validate the effectiveness of our method.

Our contributions are summarized as follows:

• Design of an Error Analysis Model: We design a new error analysis
model specifically for ESKF-based localization systems in autonomous
vehicles, providing a detailed understanding of how errors propagate
within these systems.

• Discovery of a Linear Error-Combination: We identify that the
error in ESKF-based systems can be expressed as a linear combination
of injection signals, particularly under steady-state conditions, reveal-
ing a key vulnerability that can be exploited by adversaries.

• Proposition of an Energy-Efficient Attack Method: We intro-

5

duce a novel attack strategy that utilizes constrained optimization to
minimize the energy required for achieving targeted localization errors,
offering a more efficient alternative to existing methods.

• Extensive Experimental Validation: We conduct comprehensive
evaluations through simulations, real-world datasets, and end-to-end
testing on an AI-powered autonomous driving system. Our results
demonstrate that our method outperforms the state-of-the-art Fusion-
Ripper attack, requiring 9% less energy in simulations and 18% less
in real-world scenarios while confirming its practical applicability in
actual driving conditions.

2. Problem Formulation

2.1. Multi-Sensor Fusion

In existing AI-powered autonomous driving systems, the localization mod-
ule predominantly employs multi-sensor fusion-based techniques, such as
Apollo. Multi-sensor fusion systems combine position information from GNSS
(Global Navigation Satellite System), position and orientation data from Li-
DAR (Light Detection and Ranging), and inertial estimates from IMU(Inertial
Measurement Unit) to provide accurate state estimations such as position,
velocity, and orientation [24], as shown in Figure 1. Compared to traditional
navigation methods, multi-sensor fusion leverages redundant observations
from independent sensors like GPS and LiDAR, enabling higher localization
accuracy, such as centimeter-level precision, and improved robustness in the
positioning results.

In multi-sensor fusion schemes, filtering methods based on the Kalman
Filter (KF) are the dominant approach, with the Error-State Kalman Filter
(ESKF) being the widely used model. Compared to the classical KF model,
the ESKF divides the state variables into nominal states and error states.
The nominal states are estimated without considering errors, while the er-
ror states are estimated independently and updated using the observations
provided by the sensors. Subsequently, during each observation update, the
error states are used to correct the nominal states, enabling high-precision
state estimation.

Specifically, the overall estimation process of the ESKF consists of two
steps: the prediction step and the update step.

6

ESKF-

based

MSF

lidar

locator

position/attitude

position

position/velocity/

attitude

position/velocity/

attitude(PVA)

inertial

navigation

Figure 1: Multi-Sensor Fusion

Prediction step:. In the prediction step, the nominal states are propagated
using inertial measurements to obtain a prior estimate of the pose, denoted
as:

X̌k|k−1 = f(X̂k−1, uk−1) (1)

where X̂k|k−1 is the predicted state at time step k, f(·) represents the state
transition function, and uk−1 is the control input. The error states are esti-
mated using the prediction equations to derive the predicted state estimates
and covariance estimates:

δx̌k|k−1 = Fk−1δx̂k−1 +Bk−1wk (2)

P̌k|k−1 = Fk−1P̂k−1F
T
k−1 +Bk−1QkB

T
k−1 (3)

where δx̌k|k−1 is the predicted error state at time step k, δx̂k−1 is the error
state estimate at the previous time step k− 1, wk is the process noise, P̌k|k−1

is the predicted covariance matrix, Fk−1 is the state transition matrix, Qk is
the process noise covariance.

Update step:. During the update step, the error states first calculate the
gain matrix based on the observations, then update error state estimate and
covariance matrix:

Kk = P̌k|k−1G
T
k

(
GkP̌k|k−1G

T
k + CkRkC

T
k

)−1
(4)

P̂k = (I −KkGk) P̌k|k−1 (5)

δx̂k = δx̌k|k−1 +Kk

(
zk −Gkδx̌k|k−1

)
(6)

7

where Kk is the gain matrix, P̌k|k−1 is the predicted covariance matrix
from the prediction step, Gk is the observation matrix, Rk is the observation
noise covariance matrix, P̂k is the updated covariance matrix, δx̂k is the
updated error state estimate, δx̌k|k−1 is the predicted error state from the
prediction step, and zk is the observation measurement at time step k.

Finally, the error states are used to correct the nominal states, resulting
in the current state estimation.

X̂k = X̌k|k−1 + δx̂k, (7)

A detailed explanation of the ESKF process is provided in Appendix A,
along with a comprehensive notation table summarizing all symbols and their
meanings used throughout this paper, which can be found in Appendix C.

2.2. Threat Model

Spoofing signals

GNSS signals

Spoofed trajectory

Groundtruth trajectory

Victim

Attacker

ESKF-based

MSF system

Figure 2: Attack Scenario

Scenario. We consider a sophisticated attack scenario in which a victim’s
autonomous driving system relies heavily on an ESKF-based fusion local-
ization module for accurate state estimation. In this scenario, an attacker
strategically injects spoofing signals into the sensor data, aiming to disrupt
the output of the fusion model and cause a significant deviation in state es-
timation. This deviation could be large enough to compromise the vehicle’s

8

safe operation, potentially leading to critical failures or accidents, as illus-
trated in Figure 2. Such an attack poses a serious risk, especially in complex
driving environments where precise localization is crucial.

Attacker Capabilities. In this scenario, it is assumed that the attacker has
access to an autonomous driving system identical to that of the victim. This
allows the attacker to reverse-engineer the Kalman gain matrix used in the
victim’s ESKF-based MSF localization system. Additionally, the attacker
is equipped with a high-power GPS signal spoofer capable of overwhelming
legitimate GPS signals. By utilizing this spoofer, the attacker can inject false
data into the GPS receiver, contaminating the sensor measurements before
they are processed by the fusion model. This capability allows the attacker
to precisely control the spoofing signals, maximizing the potential disruption
to the vehicle’s state estimation process.

Spoofing GeneratorAttacker：

Error-State Kalman

Filter

Victim：

······ Error-State Kalman

Filter

Figure 3: Injection Model

Attack Goal. The primary objective of the attacker is to manipulate the vehi-
cle’s state estimation by injecting a sequence of spoofing signals ϵ1, ϵ2, . . . , ϵk
at successive time steps. Let zk represent the observation data at time step k,
and z′k represent the spoofed data at the same time step. The spoofing signal
ϵk is injected such that z′k = zk+ϵk, as shown in Figure 3. This manipulation
results in a deviation ∆Xk between the state estimate before spoofing Xk and

9

the state estimate after spoofing X ′
k, where ∆Xk = |Xk −X ′

k|. The magni-
tude of ∆Xk is critical, as a sufficiently large deviation can lead to erroneous
control decisions, potentially resulting in a collision or other safety-critical
events. The attacker aims to ensure that ∆Xk ≥ dk for one or more time
steps k within the time horizon T , where DT represents the set of target de-
viations {d1, d2, . . . , dT}. Achieving this condition would signify a successful
attack, as it compromises the vehicle’s ability to operate safely.

3. Security Analysis of MSF Model Under Injection Attack

3.1. Preliminary Setup

Before we proceed with further analysis, it is necessary to clarify the
key assumptions, including the subject of our analysis, the conditions under
which the analysis is conducted, and the definitions of the symbols that will
be used throughout the analysis.

Key Assumptions. We conduct a security analysis of the injection model
mentioned in the previous section, focusing specifically on the three sensors:
GPS, LiDAR, and IMU. Among these, the IMU has the highest frequency,
followed by LiDAR, and GPS has the lowest frequency. This setup aligns
with the sensor frequency configurations commonly used in commercial au-
tonomous driving systems, such as Apollo. The injection process is carried
out under the condition that the vehicle is already operating in a steady
state.

Core Definitions. Assume that the IMU update period is Timu, the GPS
update period is Tgps, and the LiDAR update period is Tlidar. The initial state
estimate is (X̌1, P̌1), the gain matrix is Ki for i = 1, 2, . . . , k, where k ∈ N+

and the state deviation is given by ∆X̂k = ∆X̌k − ∆δx̂k. In this analysis,
variables with a hat symbol (e.g., X̂) represent posterior information, while
those with a check symbol (e.g., X̌) represent prior information.

Single Cycle: A single cycle is defined as the period from the end of
the 1st GPS spoofing to the end of the 2nd GPS spoofing. During this
cycle, there are a total of m1 = Tgps/Timu IMU prediction updates and m2 =
Tgps/Tlidar LiDAR updates. Between two consecutive LiDAR updates, there
are m3 = Tlidar/Timu IMU prediction updates.

N-Cycle: An N-cycle is defined as the cumulative period covering N
consecutive single cycles. During an N-cycle, the process repeats N times

10

the number of IMU prediction updates, LiDAR updates, and GPS spoofings
that occur in a single cycle. The total state deviation over the N-cycle is
analyzed by summing the deviations ∆X̂k over each individual cycle.

3.2. Analytical Framework

Our analysis approach begins by deriving the results for a single cycle
and then extends these results to N -cycles, as shown in Figure 4.

tLiDAR

tGPS

tIMU

1st spoofing 2nd spoofing

.......

.......

.......

IMU data LiDAR localization data spoofed GPS data

Single-Cycle

N-th spoofing

N-Cycle

Figure 4: Sensor data processing

3.2.1. Single-Cycle State Deviation Analysis

1st GPS Injection. Since all other state variables remain consistent before
and after the spoofing under the initial conditions, the state deviation is
therefore attributed solely to the influence of the GPS injection update:

∆X̂1 = 0−∆δx̂1

= −K1ϵ1
(8)

From 1st GPS Injection to 1st LiDAR Update. First, consider the IMU in-
ertial computation. Due to the assumption of a steady-state system, there
are a total of m3 = Tlidar/Timu iterations:

X̌1+m3 = X̂1 +

[
v̂ · Timu ·m3

012×1

]
(9)

where v̂ is the velocity of the state. Since the increment is fixed, there is
no difference before and after injection, so the state deviation is:

∆X̌1+m3 = ∆X̂1 (10)

11

Next, we calculate the error and update the state based on LiDAR obser-
vations. Since it is in steady-state, Fk+1 is considered unchanged basically,
we name it F , so are the B and w. Starting with the error calculation, based
on the derivation from a single observation, the error is a fixed value:

δx̌1+m3 = Fδx̂m3 +Bw

= F 2δx̂m3−1 + F ·Bw +Bw

= . . .

= Fm3δx̂1 + (Fm3−1 + · · ·+ F 1 + I) ·Bw

= (Fm3−1 + · · ·+ F 1 + I) ·Bw

(11)

Since the error is independent of the observations, it cancels out in the
state deviation calculation before and after injection.

For the LiDAR observation update:

δx̂1+m3 = δx̌1+m3 +K1+m3(zL1 −GLδx̌1+m3) (12)

where zL1 is the LiDAR’s 1st measurement. Since the LiDAR observation
does not contain the spoofing increment and is the same before and after
spoofing:

∆δx̂1+m3 = K1+m3∆X̌1+m3 (13)

Finally, we calculate the state deviation. Based on the results from the
previous Eq. (10)(13), we have:

∆X̂1+m3 = ∆X̌1+m3 −∆δx̂1+m3

= (I −K1+m3)∆X̌1+m3

= (I −K1+m3)∆X̂1

(14)

From 1st LiDAR Update to m2-th LiDAR Update. Based on the state devi-
ation iterative equation provided in previous paragraph, we have:

∆X̂1+km3 = (I −K1+km3)∆X̂1+(k−1)m3 (15)

where k is the LiDAR’s k-th measurement. Thus, after m2 = Tgps/Tlidar

iterations, with Eq. (10) we obtain:

12

∆X̂1+m2·m3 =

m2∏
j=1

(I −K1+jm3)∆X̂1

= −
m2∏
j=1

(I −K1+jm3) ·K1ϵ1

(16)

Note that the gain matrix from 1 + m3 to 1 + m2 · m3 are all LiDAR
update gain matrixs, while K1 is the GPS observation update gain matrix.

2nd GPS Injection. Above, we reveal that:

• The state deviation caused by IMU inertial computation is independent
of the number of iterations and is only related to the state deviation
induced by the previous observation update.

• The error does not affect the state deviation, nor is it related to the
number of iterations. It is only related to the state deviation induced
by the previous observation update.

Therefore, even if the 2nd GPS spoofing does not coincide with the most
recent LiDAR observation update (which is more realistic), there will be
a brief period of IMU inertial computation and error calculation between
the observation updates. However, based on points 1 and 2 above, we can
conclude that these computations do not affect the state deviation, which
means we only need to calculate the state deviation caused by the LiDAR
updates between the two GPS injections.

To analyze the state deviation, we first need to consider the error update.
The error update can be expressed as:

δx̂′
1+m1

= δx̌1+m1 +K1+m1(z
′
G2 −HGδx̌1+m1) (17)

where the zG2 is the GPS’s second measurement. Given that z′G2 = X̌1+m1 −
(zG2 + ϵ2), this equation simplifies to:

δx̂′
1+m1

= [(I −K1+m1HG)δx̌1+m1 −K1+m1zG2] +K1+m1 · (X̌1+m1 − ϵ2)
(18)

Thus, the error deviation can be described by the following equation:

13

∆δx̂1+m1 = K1+m1∆X̌1+m1 −K1+m1ϵ2 (19)

Next, we consider the state deviation caused by the 2nd GPS injection.
The state deviation after the 2nd GPS spoofing can be written as:

∆X̂1+m1 = ∆X̌1+m1 −∆δx̂1+m1

= (I −K1+m1)∆X̌1+m1 +K1+m1ϵ2
(20)

From the previous Eq. (16), we know that:

∆X̌1+m1 = ∆X̂1+m2·m3

= −
m2∏
j=1

(I −K1+jm3) ·K1ϵ1
(21)

Substituting this into the equation for the state deviation, we obtain:

∆X̂1+m1 = (I −K1+m1)∆X̌1+m1 +K1+m1ϵ2

= (I −K1+m1) ·

[
m2∏
j=1

(I −K1+jm3) ·∆X̂1

]
+K1+m1ϵ2

= (I −K1+m1) ·

[
−

m2∏
j=1

(I −K1+jm3) ·K1ϵ1

]
+K1+m1ϵ2

(22)

It is important to note that the gain matrix K with a subscript contain-
ing m1 is associated with the GPS observation updates, while those with a
subscript containing m3 correspond to the LiDAR observation updates.

3.2.2. Extending State Deviation to N-Cycle Injections

This section extends the analysis to state deviation across multiple cycles
of injection, generalizing from single-cycle scenarios to N -cycle scenarios.

As shown in the previous section, the state deviation iterative equation
is:

∆X̂1+km1 = (I −K1+km1)∆X̌1+km1 +K1+km1ϵk

= (I −K1+km1) ·

[
m2∏
j=1

(I −K1+jm3) ·∆X̂1+(k−1)m1

]
+K1+km1ϵk

(23)

14

For the convenience of notation, let all GPS gain matrices be denoted by
Kg and all LiDAR gain matrices by Kl.

Thus, we have:

∆X̂1+km1 = (I −Kg) ·

[
m2∏
j=1

(I −Kl) ·∆X̂1+(k−1)m1

]
+Kgϵk

= (I −Kg) · (I −Kl)
m2 ·∆X̂1+(k−1)m1 +Kgϵk

(24)

Let A = (I −Kg) · (I −Kl)
m2 , then:

∆X̂1+km1 = A ·∆X̂1+(k−1)m1 +Kgϵk

= . . .

= Ak−1∆X1 + Ak−2Kgϵ2 + · · ·+ A1Kgϵk−1 +Kgϵk

= −Ak−1Kgϵ1 +
k−2∑
i=0

AiKgϵk−i

(25)

It can be observed that, since the matrix coefficients are constants, the
deviation is a linear combination of the injection sequences, making it a
concise equation for further analysis.

4. Optimized Injection Attack Methodology

In this section, we will demonstrate how to leverage the findings from
the previous section and propose a constraint-based optimization method for
injection attacks.

4.1. Fusion Strategy
While the Error-State Kalman Filter (ESKF) fusion model is widely

adopted, there are different kinds of practical fusion strategies for implement-
ing the fusion process. In this section, we conduct a quantitative analysis
based on one of the most commonly used fusion strategies, which is also
adopted by the commercial localization system, Apollo Shenlan[48].

Consider the state vector:

X =

p
v
θ
ba
bg

 (26)

15

where p represents the 3D position, v represents the 3D velocity, θ represents
the 3D orientation, and ba and bg are the accelerometer and gyroscope biases.

In this analysis, LiDAR provides the position plidar = [x, y, z]T and orien-
tation θlidar = [roll, pitch, yaw]T information, while GPS provides the position
pgps = [x, y, z]T information for state estimation updates. Therefore, each
update observation z is represented as:

z =

plidarθlidar
pgps

 (27)

Since the actual deviation generally considers lateral or longitudinal shifts
in the plane, the injection only affects the position in the x and y directions.
Assuming the injection is perpendicular to the vehicle’s direction of travel,
the k-th injection vector is given by ϵk = [ϵgpsk sin(θz),−ϵgpsk cos(θz), 0]

T , where
θz is the rotation angle of z-direction. Thus, the update observation z under
injection is:

z′ =

 plidar
θlidar

pgps + ϵ

 (28)

Next, we will quantitatively derive and analyze the deviation according
to the filtering steps of the ESKF.

Inertial Prediction. Consider the impact of velocities vx and vy on the posi-
tion state variables, with all state variables defined in the N-frame. Given
that the vehicle is in a steady operating state, changes in orientation and
velocity can be approximately neglected over short periods of time. Thus,
we have:

X̌k+1 = X̂k +

vx · Tvy · T
013×1

 (29)

∆X̌k+1 = ∆X̂k +

∆X̂k(41) · T
∆X̂k(51) · T

013×1

 (30)

where the subscript notation such as X̂k(41) refers to the element in the 4th

row and 1st column of the state vector X̂, T is the time interval before the
next observation update.

16

Error Prediction Iterative Calculation. The error prediction is calculated as
δx̌k = Fδx̌k−1 + Bω, as shown in Eq. (11). Although F and B are time-
varying matrices, their impact is considered negligible for the overall accu-
racy. This is because the initial error is set to zero in the program and
remains unchanged throughout the process.

Error Update Calculation. The observation matrix G and the update obser-
vation error ϵ are given by:

G =

I3 0 0 0 0
0 0 I3 0 0
I3 0 0 0 0

 , ϵ =

06×1

ϵgps sin(θz)
−ϵgps cos(θz)

0

 (31)

where ϵgps is the GPS measurement injection error.
The error update is calculated as:

δx̂k+1 = δx̌k+1 +K15×9

[
X̌9

k+1 − (zk+1 + ϵk+1)−G9×15δx̌k+1

]
= δx̌k+1 −K15×9(ϵk+1 +G9×15δx̌k+1) +K15×9(X̌

9
k+1 − zk+1)

(32)

where the subscripts 15×9 and superscripts 9 indicate the dimensions of the
matrices and vectors, respectively. These notations are used to facilitate the
analysis of the equations.

The error deviation is then:

∆δx̂k+1 = K15×9(∆X̌9
k+1 − ϵk+1) (33)

Error Correction. The corrected state is calculated as:

X̂k+1 = X̌15
k+1 − δx̂9

k+1 (34)

The state deviation is then:

∆X̂k+1 = ∆X̌15
k+1 −∆δx̂9

k+1 (35)

Error Iterative Equation. Substituting the results from the Inertial Predic-
tion and Error Update Calculation into the Error Correction, we obtain:

∆X̂k+1 = ∆X̌15
k+1 −∆δx̂9

k+1

= ∆X̂k +

∆X̂k(41) · T
∆X̂k(51) · T

013×1

−K15×9(∆X̌9
k+1 − ϵk+1)

(36)

17

where ∆X̌9
k+1 also applies to Eq. (30) but is somewhat special, which will be

discussed in the next section.
The derivation above is based on the ESKF algorithm analysis in Section

3.2. The process depends on the fusion strategy, such as the Apollo Shenlan[48]
used here. For different fusion strategies, only the observation variables
change, while the analysis remains the same and is not limited to a spe-
cific strategy.

4.2. Constrained Optimization

Based on the fusion strategy and analysis results presented in Section
4.1, a linear relationship can be established between the error deviation and
the injection magnitude. For the error deviation to pose a significant threat
to the vehicle’s safety, it must reach a certain threshold. Simultaneously,
the energy required to construct the injection should be minimized to avoid
detection and maintain a covert attack. To address these conditions, we
can formulate constraint conditions to describe the deviation magnitude and
construct an objective function aimed at minimizing the injection energy.
By applying constraint optimization methods to the established error devi-
ation relationship, the optimized injection magnitude can be obtained. The
problem is formulated as follows:

Problem. Consider a target with the ESKF model (Section 2.1) and a mea-
surement injection model (Section 2.2). Assume the target knows the gain
matrix K. Find a sequence of injection signal inputs {ϵ1, ϵ2, . . . , ϵT}, that
achieves a desired separation dt between X ′

t and Xt at step t. Such that,

minimize
∑T

t=1 γt · ∥ϵt∥
p
p

subject to,
∥Xt −X ′

t∥
p
p ≥ dpt , ∀t

(37)

where γt ∈ R+ is a weighting parameter, and T ∈ Z+ is the optimization
horizon.

State Error Deviation. Consider the injection signal ϵk = [ϵk sin(θz),−ϵk cos(θz), 0]T .
Based on Eq. 36, the state error deviation variables can be recursively deter-
mined as follows. Detailed derivations are provided in the Appendix B.

∆X̂k+1(11) = (1−K11 −K17)∆X̂k(11) + (1−K11)T ·∆X̂k(41)−
K17ϵk+1 sin(θz)

(38)

18

Algorithm 1 Optimized Injection Attack Algorithm

1: Input: K: Kalman gain matrix; T : Time step; θz: yaw angle; Dt:
Desired deviation vector at time t

2: Output: Optimal injection sequences ϵ∗, state deviations ∆X̂k(11),

∆X̂k(21), ∆X̂k(41), ∆X̂k(51), and minimum energy
∑k

t=1 ∥ϵt∥2
3: Initialize deviation values to zero: ∆X̂0(11) ← 0, ∆X̂0(21) ← 0,

∆X̂0(41) ← 0, ∆X̂0(51) ← 0
4: Extract Kalman gains from K:
5: K11 ← K[1, 1], K17 ← K[1, 7]
6: K22 ← K[2, 2], K28 ← K[2, 8]
7: K41 ← K[4, 1], K47 ← K[4, 7], K45 ← K[4, 5]
8: K52 ← K[5, 2], K58 ← K[5, 8], K54 ← K[5, 4]
9: for i = 0 to k − 1 do

10: Compute the next state deviations:
11: ∆X̂i+1(11) ← (1 − K11 − K17)∆X̂i(11) + (1 − K11)T · ∆X̂i(41) −

K17ϵi+1 sin(θz)
12: ∆X̂i+1(21) ← (1 − K22 − K28)∆X̂i(21) + (1 − K22)T · ∆X̂i(51) +

K28ϵi+1 cos(θz)
13: ∆X̂i+1(41) ← (−K41−K47)∆X̂i(11)+(1−K41T −K44) ·∆X̂i(41)−K45 ·

∆X̂i(51) −K47ϵi+1 sin(θz)

14: ∆X̂i+1(51) ← (−K52−K58)∆X̂i(21)+(1−K52T −K55) ·∆X̂i(51)−K54 ·
∆X̂i(41) +K58ϵi+1 cos(θz)

15: Apply constraint:

16: if ∥
[
∆X̂i+1(11)

∆X̂i+1(21)

]
∥ ≥ Dt then

17: Continue with the next step
18: else
19: Adjust ϵi+1 to satisfy the constraint
20: end if
21: end for

Obtain ϵ∗ = {ϵ1, ϵ2, . . . , ϵk}
22: Return the optimal injection sequence ϵ∗, the final state deviations

∆X̂k(11), ∆X̂k(21), ∆X̂k(41), ∆X̂k(51), and minimum energy
∑k

t=1 ∥ϵt∥2

19

∆X̂k+1(21) = (1−K22 −K28)∆X̂k(21) + (1−K22)T ·∆X̂k(51)+

K28ϵk+1 cos(θz)
(39)

∆X̂k+1(41) = (−K41 −K47)∆X̂k(11) + (1−K41T −K44) ·∆X̂k(41)−
K45 ·∆X̂k(51) −K47ϵk+1 sin(θz)

(40)

∆X̂k+1(51) = (−K52 −K58)∆X̂k(21) + (1−K52T −K55) ·∆X̂k(51)−
K54 ·∆X̂k(41) +K58ϵk+1 cos(θz)

(41)

Optimized Injection Attack Algorithm. Consider the injection signal ϵ =
[ϵk sin(θz),−ϵk cos(θz), 0]T , with the objective function defined as the L2-
norm of the injection magnitude when p = 2, which is the energy cacluation.
Setting the weight params γt to 1, we derive the optimized injection attack
algorithm 1.

5. Experiments

In this section, we first introduce the experimental setup, including the
simulation and real-world datasets. Following that, we outline the experimen-
tal design, beginning with the validation of our model’s accuracy, followed
by comparative experiments against the current state-of-the-art method, Fu-
sionRipper, under the same deviation targets. Finally, we conduct end-to-end
injection tests on an AI-powered autonomous driving system to demonstrate
the effectiveness of our approach.

5.1. Setup

Environment. The experiments were conducted on a system with the follow-
ing specifications: Ubuntu 18.04 LTS operating system, an Intel(R) Core(TM)
i7-8700K CPU @ 3.70GHz, a GeForce GTX 1080 Ti GPU, and 32GB of
memory. The autonomous driving system used in our experiments is Shen-
lan MSF[48], which replaces the black-box Apollo MSF[2] with a white-box
approach. This modification allows for transparent analysis, making it more
trustworthy and providing the high precision typical of commercial systems.

20

(a) Vehicle (b) PointCloud Map (c) Sensors Trajectory

Figure 5: Real-world data collection environment

Datasets. For the datasets, we utilized the GNSS-INS-SIM[49] simulation li-
brary to generate IMU and GPS simulation data. The specific trajectory
used was a constant-speed straight-line trajectory with 5.0 m/s velocity and
90◦ rotation of z-direction. Since this simulation library does not provide Li-
DAR data, we converted ground truth values into LiDAR positioning data,
theoretically enhancing positioning accuracy and further validating the ef-
fectiveness of the injection attack method. Real-world data were collected
using an actual vehicle equipped with the autonomous driving system on a
straight road segment. The system recorded environmental data and system
state information to create the real-world dataset.

5.2. Verification of Model Accuracy

To verify the model’s accuracy, we compare the predicted offset with
the actual observed offset and calculate the percentage error to assess the
model’s fit, guiding future injection attacks. Since our approach differs from
FusionRipper[14], only testing our method’s accuracy is necessary for opti-
mizing the attack, without needing a comparison with FusionRipper.

5.2.1. Constant Injection Attack

In the constant injection verification, we set the injection amount to ϵ = 1
m and tested the model on both simulated and real datasets. During the
tests, the actual offset was used as a baseline to calculate the percentage
error of the predicted offset. As shown in Figure 6, in 30 injection tests on
the simulated dataset, the error between the actual and predicted offsets was
kept within 6%. On the real dataset, however, the maximum error reached
15%, which is understandable given the additional noise and other influencing
factors present in real-world data. Notably, the error was controlled within

21

0 5 10 15 20 25 30
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Of
fs

et
(m

)

0.69%

4.01%

0.85%
-2.41%

-1.86% 2.00% 5.28% 5.59% 3.73% 1.47%

Actual vs Predicted Offset Data
Actual
Predicted

(a) sim dataset

0 5 10 15 20 25 30
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Of
fs

et
(m

)

-0.21%

-3.97%
-14.99% -7.50% 3.21% 7.01% 3.87% 0.61% -1.22% -2.01%

Actual vs Predicted Offset Data

Actual
Predicted

(b) real dataset

Figure 6: Constant injection test

0 2 4 6 8 10
Step

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

Of
fs

et
(m

)

-0.02%

1.99%

2.02%

0.97%
Actual vs Predicted Offset Data

Actual
Predicted

(a) sim dataset

0 2 4 6 8
Step

0.0

0.5

1.0

1.5

2.0

Of
fs

et
 (m

)

0.73%
0.93%

2.10%

2.82%

3.18%

3.31%

3.26%
Actual vs Predicted Offset

Actual
Predicted

(b) real dataset

Figure 7: Incremental injection test

22

Condition Type Data Type 1 2 3 4 5 6 7 8 9 10

Constant

Sim

Actual Data 0.194 0.345 0.457 0.536 0.586 0.614 0.623 0.619 0.606 0.587

Predicted Data 0.195 0.355 0.476 0.558 0.606 0.627 0.628 0.616 0.596 0.573

Error Rate(%) 0.67 2.97 3.97 3.93 3.32 2.19 0.85 0.49 1.63 2.41

Real

Actual Data 0.230 0.394 0.505 0.573 0.607 0.616 0.608 0.590 0.565 0.536

Predicted Data 0.229 0.409 0.512 0.550 0.550 0.534 0.517 0.504 0.498 0.496

Error Rate(%) 0.21 3.81 1.33 3.97 9.39 13.28 14.99 14.44 11.84 7.54

Increment

Sim

Actual Data 0.007 0.005 0.001 0.001 0.000 0.000 0.177 0.599 1.251 1.926

Predicted Data 0.007 0.006 0.001 0.000 0.001 0.001 0.177 0.611 1.276 1.945

Error Rate(%) 1.14 9.80 0.00 0.00 0.00 0.00 0.02 2.00 2.03 0.97

Real

Actual Data 0.000 0.000 0.000 0.004 0.094 0.281 0.569 0.951 1.404 1.884

Predicted Data 0.000 0.000 0.000 0.004 0.095 0.287 0.585 0.982 1.450 1.945

Error Rate(%) 0.00 0.00 0.00 0.72 0.93 2.11 2.83 3.19 3.27 3.28

Table 1: Comparison of Simulated and Real Data under Constant and Increment Injection

4% for the first four injections and within 2% for the final offset, indicating
that the accuracy before and after the injections is acceptable.

5.2.2. Incremental Injection Attack

For the incremental injection spoofing, we followed the thresholds set in
the FusionRipper paper for different road scenarios, choosing the interme-
diate threshold of 1.945 meters as our target offset. We then applied the
constrained optimization algorithm proposed in Section 4.2, using the scipy
[50] library to solve for the optimal injection amounts, which provides a suite
of optimization algorithms. As shown in Figure 7, in 10 injection tests on
the simulated dataset, the error between the actual and predicted offsets was
controlled to within 2%. On the real dataset, the error remained within 4%.

The results from both constant and incremental injection attack demon-
strate that the model maintains a reasonable level of accuracy overall. Whether
dealing with simple constant injections or optimized injections, the model
achieves satisfactory performance.

5.3. Injection Attack Method Comparison

In this section, we will compare the required injection energy for achieving
the same target offset between the current best attack method, FusionRipper,
and our proposed method.

23

0.30.40.50.60.70.80.91.01.11.21.31.41.5
d

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

2.
0

f

0.20.20.40.60.70.80.91.01.11.31.51.61.7

0.20.20.60.81.21.41.51.71.92.42.62.83.0

0.20.20.81.21.92.22.42.73.04.24.64.9

0.20.21.11.83.03.43.84.24.7

0.20.21.42.6

0.20.21.93.6

0.20.22.4

0.20.23.1

0.20.2

0.20.2

Closest to 1.945: 1.902
(f=1.3, d=0.7)

1

2

3

4

(a) sim dataset

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
d

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

f

0.160.22 0.5 0.660.710.880.99 1.2 1.3 1.5

0.160.220.86 1.2 1.5 1.7 1.9 2.5 2.7 3

0.160.220.91 2.2 2.6 3 3.3 5.5 6.1

0.160.22 1.5 4.1 4.9

0.160.22 3.9

0.160.22

0.160.22

0.160.22

0.160.22

Closest to 1.945: 1.862
(f=1.2, d=0.9)

1

2

3

4

5

6

(b) real dataset

Figure 8: Optimal params combination analysis

5.3.1. Optimal Attack Params

The FusionRipper method divides the entire attack process into two
phases. In the first phase, a constant injection of d is applied until the
offset exceeds a predetermined threshold of 0.295 meters, at which point
the process transitions into the second phase. The second phase employs
exponential deception, using the formula d · f i, where f is an exponential
growth parameter. Each subsequent injection builds on the previous one,
multiplying by f to amplify the resulting offset impact.

In our study, we also set the offset target to 1.945 meters. However,
unlike the constraint optimization approach, which directly generates the
optimal injection sequence, the FusionRipper method requires iterative test-
ing to determine the optimal parameters d and f . Following the methodology
outlined in the FusionRipper paper, we explored a range of parameters: for
the simulated dataset, as shown in Figure 8, d values ranged from 0.3 to
1.4 and f values from 1.1 to 1.9, both with a step size of 0.1. Similarly, for
the real dataset, d values ranged from 0.3 to 1.2 and f values from 1.1 to
1.9, also with a step size of 0.1. As illustrated in the figure, the optimal
parameter combinations for the simulated and real datasets were found to
be d = 0.7, f = 1.3 and d = 0.9, f = 1.2, respectively.

5.3.2. Attack Methods Comparison

As shown in Figure 9, both in the simulated and real datasets, the at-
tack method implemented via QCQP consistently outperforms FusionRipper

24

0 2 4 6 8 10
Step

0

1

2

3

4

In
je

ct
io

n
(m

)

Energy Difference: -4.38
(-9.22%)

FR vs QCQP Injection Data
FR Injection (Energy=47.52)
QCQP Injection (Energy=43.14)

0 2 4 6 8 10
Step

0.5

0.0

0.5

1.0

1.5

2.0

Of
fs

et
 (m

)

QCQP: 1.88m
 FR: 1.90m

FR vs QCQP Offset Data
FR Offset
QCQP Offset
Threshold (1.945m)

(a) sim dataset

0 2 4 6 8 10
Step

0

1

2

3

4

In
je

ct
io

n(
m

)

Energy Difference: -8.94
(-18.64%)

FR vs QCQP Injection Data
FR Injection (Energy=47.98)
QCQP Injection (Energy=39.04)

0 2 4 6 8 10
Step

0.5

0.0

0.5

1.0

1.5

2.0

Of
fs

et
(m

)
 FR: 1.87m
QCQP: 1.93m

FR vs QCQP Offset Data
FR Offset
QCQP Offset
Threshold = 1.945m

(b) real dataset

Figure 9: Comparison of FusionRipper and QCQP

in terms of achieving greater state estimation offsets with lower energy con-
sumption. By setting the same offset target that is sufficient to cause the
vehicle to deviate from the road, potentially leading to an accident, the QCQP
approach reduces energy consumption by approximately 9% in the simulated
dataset, while in the real dataset, the energy savings increase to around
18%. Specifically, the QCQP method achieves slightly larger offsets compared
to FusionRipper, indicating its effectiveness in disrupting the vehicle’s lo-
calization system.

Moreover, the ability of QCQP to achieve these results with reduced energy
expenditure highlights its optimization capability, which is crucial for real-
world applications where energy resources may be limited. The consistent
performance across both datasets further validates the robustness of the QCQP
method, demonstrating its applicability in varied scenarios, from controlled
simulations to complex real-world environments.

25

5.4. Attack Effectiveness

In Sections 5.2 and 5.3, the experiments are designed to demonstrate
the model’s accuracy and the effectiveness of the attacks in detail, but with
limited experimental scenarios. Therefore, we conduct a more extensive set
of tests in this section. The scenario remains straight-line, as it aligns better
with the steady-state attack assumptions. The main objective is to evaluate
the model’s accuracy and attack effects on simulation and real-world datasets
at different velocities.

5.4.1. Experimental Setup

We collect sensor data at 2, 5, 7, and 10 m/s velocities for both the
simulation and real-world datasets. The other experimental settings remain
the same as before, and the specific details can be found in Section 5.1.
Additionally, the experimental process for each dataset is the same as in
Sections 5.2 and 5.3.

5.4.2. Results

As shown in Figure 10, (a) represents the average error percentage of
the model at the first 10 points. It can be observed that at low speeds,
such as 2 and 5 m/s, the accuracy difference is minimal. However, as the
speed increases, such as at 10 m/s, the model’s accuracy begins to decline.
(b) shows the model’s energy rate at different speeds. At low speeds, the
energy difference is also slight, but as the speed increases, the energy rate
starts to decrease. This indicates that the model’s prediction performance
deteriorates in high-speed scenarios, and the error increases. Nevertheless, it
still maintains a certain level of performance.

5.5. Attack Robustness

5.5.1. Inaccuracy Sources and Modeling

We build on the work[14] to model localization and uncertainty errors,
which can be attributed to three main factors: localization error σ1 due to
the attacker’s self-localization, distance measurement error σ2 from LiDAR
sensors, and GPS receiver error σ3, representing the discrepancy between the
intended and actual GPS positions. These errors are modeled using a com-
bined normal distribution N(0, 0.0582), which represents the total position
error σpos. Additionally, the measurement uncertainty σvar is set to 0.008
based on real-world data.

26

2 5 7 10
Velocity(m/s)

0

2

4

6

8

10

12

14

Er
ro

r R
at

e
(%

)

3.1 3.4
4.8

6.1

8.0 8.2

10.1

13.6

Model Accuracy
sim
real

(a) model accuracy

2 5 7 10
Velocity(m/s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

En
er

gy
 R

at
e

(%
)

9.1 9.2

6.8

4.1

18.0 18.6

14.4

11.5

Attack Energy Rates
sim
real

(b) attack energy

Figure 10: Comparison under varying velocity

5.5.2. Experimental Setup

We use the error distributions mentioned above to assess the robustness of
our method, incorporating localization errors from [14]. For each GPS input,
localization errors are sampled from N(0, σ2

pos), with directions uniformly
distributed between 0 and 360 degrees, while measurement uncertainties are
drawn from N(0, σ2

var). Additionally, we evaluate the impact of 2× and 3×
error magnitudes to further test robustness.

5.5.3. Results

As shown in Figure 11, as the injected error increases, the energy rate of
our method decreases relative to FusionRipper. Without error, the energy
rates are 9.22% and 18.64%, respectively. As the error gradually increases,
the energy rates decrease from 8.90% and 17.45% to 4.05% and 13.04%,
respectively.

5.6. Ablation Study

Since our safety analysis derivation considers the impact of both position
and velocity on vehicle state estimation, an ablation experiment is needed
to further illustrate the importance of additional state variables in the mod-
eling process. Here, we assume that the influence of velocity, particularly
longitudinal and lateral velocity, is disregarded in the state estimation error
model. We then compare the error between the actual vehicle position and
the position estimated by the model.

27

no error 1 × 2 × 3 ×
Applied Error Amount (= pos, var)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

En
er

gy
 R

at
e

(%
)

9.2 8.9
7.1

4.0

18.6
17.4

15.2

11.3

Attack Energy Rates
sim
real

Figure 11: Attack energy rates under varying injection inaccuracies

5.6.1. Experimental Setup

This experiment uses a simulated dataset, with the experimental setup
consistent with Sections 5.1 and 5.2. However, in the modeling process,
the influence of the velocity variable is not considered. Following the same
method as in Section 4.1, we obtain the following model:

∆X̂k+1(11) = (1−K11 −K17)∆X̂k(11) −K17ϵk+1 sin(θz) (42)

∆X̂k+1(21) = (1−K22 −K28)∆X̂k(21) +K28ϵk+1 cos(θz) (43)

∆X̂k+1(41) = (−K41 −K47)∆X̂k(11) −K47ϵk+1 sin(θz) (44)

∆X̂k+1(51) = (−K52 −K58)∆X̂k(21) +K58ϵk+1 cos(θz) (45)

5.6.2. Comparison of Model Accuracy

As shown in Figure 12, we calculated the model’s prediction error for the
first 10 data points. The results indicate that the average prediction error
is 3.41% when incorporating speed and 24.94% without it. This significant
difference demonstrates the critical role of the speed variable in enhancing
model completeness, which, in turn, influences the accuracy of state estima-
tion predictions.

28

0 5 10 15 20 25 30
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Of
fs

et
(m

)

0.69%

4.01%

0.85%
-2.41%

-1.86% 2.00% 5.28% 5.59% 3.73% 1.47%

Actual vs Predicted Offset Data
Actual
Predicted

(a) model considering velocity

0 5 10 15 20 25 30
Step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Of
fs

et
(m

)

0.69%

-19.64%
-22.25%-15.43% -4.66% 4.34% 7.84% 6.67% 3.75% 1.19%

Actual vs Predicted Offset Data
Actual
Predicted

(b) model without considering velocity

Figure 12: Comparison of different model accuracy

5.7. End-to-end Experiment for AI-powered Autonomous Driving System

In the experiments above, we did not consider the vehicle’s actual plan-
ning, control modules, and dynamic feedback. In this section, we will conduct
end-to-end injection attacks on a real vehicle equipped with an AI-powered
autonomous driving system to validate the effectiveness of this method.

(a) Vehicle hardware (b) Physical environment

Figure 13: Vehicle hardware and experiment environment

Experiment Setup. Our test vehicle is based on a Pix Hooke chassis equipped
with the Apollo Shenlan [48] autonomous driving system. The Apollo Shenlan
system is based on Apollo 6.0 edu [51] version, with the black-box MSF sys-
tem replaced by Shenlan MSF. Other hardware includes a 32-line LiDAR,
a Huace CGI-410 INS, and a Nuvo-8111 industrial PC with an Intel Core

29

i9-9900K CPU, NVIDIA RTX 3060 GPU, 32GB RAM, and a 1TB SSD, as
depicted in Figure 13.

We selected a straight road and activated the full suite of autonomous
driving modules, which included perception, localization, prediction, plan-
ning, routing, and control. To enable the autonomous driving, we set a
specific target endpoint for the vehicle to reach. During the driving process,
we strategically injected attack vectors aimed at modifying the GPS obser-
vation data, which in turn altered the vehicle’s localization results. These
manipulated localization results subsequently propagated through the down-
stream modules, ultimately leading to changes in the vehicle’s throttle and
steering control, thereby impacting its overall trajectory.

(a) Physical View (b) MSF View

Figure 14: End-to-end experiment for autonomous driving vehicle

Results. As shown in Figure 14, during the normal autonomous driving pro-
cess, the injection attack successfully caused the vehicle to deviate from its
intended trajectory, resulting in the vehicle colliding with the curb. This
outcome clearly demonstrates the effectiveness of our method in exploiting
system vulnerabilities, leading to significant disruptions as predicted. The
ability to induce such a failure in a realistic setting underscores the practical
applicability and impact of our approach on autonomous driving systems.

30

6. Limitations And Defense Discussions

6.1. Limitations

Error Model Constraints. Our research primarily focuses on the error-state
Kalman filter algorithm. Due to the inherent complexity of the model, we
rely on a steady-state assumption to filter and minimize potential errors,
aiming to capture the primary impact of the injection-induced vehicle state
deviations. Future work could explore model analysis under different states
to enhance robustness and adaptability.

Testing Scenario Limitations. Due to the assumptions underlying our model
analysis, our attack scenarios were only validated and tested in straight-
line environments. This limitation means that the security analysis and
attack methods have not been tested in more complex scenarios, such as
those involving turns. This will serve as a starting point for future work.

6.2. Defense Discussions

System-Level Cross-Validation. GPS spoofing attacks can cause noticeable
position discrepancies between LiDAR-based locators and MSF-based loca-
tors, as the manipulated GPS signals lead to false position estimates. By
comparing the position estimates from both systems and validating the dis-
crepancies against a predefined threshold, such attacks can be detected. If
the discrepancy exceeds the threshold, it serves as an indicator of a GPS
spoofing attack, prompting the system to take corrective actions.

Algorithm-Level State Monitoring. Monitoring changes in the MSF system’s
internal states over time helps understand its response to GPS spoofing at-
tacks. Additionally, strengthening the detection of malicious sensor signals,
such as spoofed GPS, before the fusion process can improve system robust-
ness by excluding unreliable data and ensuring more accurate fusion out-
comes.

7. Related Work

Sensor Spoofing and AD Security. Autonomous vehicles rely on various sen-
sor data for tasks such as perception and localization. Attackers can forge
sensor data to interfere with the autonomous system’s estimation of the vehi-
cle’s current state, thereby posing a threat to vehicle safety. Existing research
has addressed sensor spoofing across IMU, LiDAR, and GPS systems.

31

In the realm of IMU spoofing, two main types of attacks are identified.
Trippel[52] exposed the susceptibility of MEMS accelerometers to malicious
acoustic interference, leading to compromised linear and angular velocity
data. Ji[53] manipulating IMU data to disrupt a vehicle’s target detection
functionality, specifically targeting the system’s anomaly detection mecha-
nisms. Similar to the studies on LiDAR deception, research on IMU spoof-
ing predominantly focuses on attacks against individual sensors and does not
address the challenges in scenarios involving the fusion of multiple sensors.

In the realm of LiDAR spoofing, Cao[11] developed a method for attack-
ers to synchronize a photodiode with a LiDAR, creating deceptive points
in the point cloud. Tu[54] explored the creation of adversarial 3D objects
to mislead LiDAR systems. These objects, however, are noticeable due to
their unique shapes and placements. Zhu[18] focused on identifying crucial
adversarial positions in physical space, aiming to deceive LiDAR systems
more efficiently. Jin[55] esigned a physical laser attack against LiDAR-based
3D object detection. Li[56] explores the vulnerability of LiDAR point cloud
processing in autonomous vehicles to adversarial attacks through GPS-based
trajectory spoofing, demonstrating that minor trajectory perturbations can
lead to significant detection failures in 3D object detection systems, without
the need to tamper with raw LiDAR data. These studies primarily concen-
trate on single-sensor deception strategies targeting LiDAR in autonomous
driving systems, overlooking the complexities involved in multisensor fusion
positioning tasks that incorporate LiDAR.

In the realm of GPS spoofing, Shen [14] was the first to successfully carry
out GPS spoofing attacks on an MSF-based localization system and proposed
an attack strategy. Building on Shen’s approach, Chang [47] improved the
success rate of attacks using FusionRipper by incorporating scene classifica-
tion techniques. Zeng [57] introduced an idea that leveraged GPS spoofing to
manipulate IMU data under similar scenarios, successfully misleading vehicle
localization. Beyond autonomous vehicles, there has also been research on
GPS spoofing attacks targeting drones and robots. For instance, Sathaye [58]
successfully employed a GPS transmitter to spoof and manipulate the drone
in a real-world scenario. Su[59] proposes a stealthy GPS spoofing strategy
aimed at manipulating the trajectory of unmanned aerial vehicles (UAVs),
effectively altering their flight paths without detection.

Security Analysis on Multi-Sensor Fusion. Nashimoto[45] explored the vul-
nerabilities of an Attitude and Heading Reference System (AHRS) under sig-

32

nal injection attacks, demonstrating significant security risks in systems that
fuse data from multiple sensors, notably in inclination measurements. This
work suggests new directions for bolstering the security of sensor fusion sys-
tems. Shen[14] developed FusionRipper, a technique for identifying and ex-
ploiting vulnerabilities in LiDAR-based ESKF systems, combining theoreti-
cal analysis with simulation experiments to pinpoint critical weaknesses, such
as LiDAR locator uncertainty and ESKF initial state uncertainty. Chang[46]
found that the sensor update frequency significantly affects the success of
GPS spoofing attacks, corroborating FusionRipper’s premises. However, vul-
nerabilities were deemed more critical in steady states, indicating the IMU’s
limited role in initiating takeover effects.

False Data Injection. Several studies have explored the vulnerability of Kalman
filters to such attacks. Zhang[60] proposed a strategy for injecting fake data
into Kalman filters using a constrained optimization problem. Li[61] devel-
oped an optimal attack strategy maximizing estimation error while ensuring
stealthiness. Guo[62] investigated fake data injection attacks on multi-sensor
systems, proposing an optimal strategy to maximize the degradation of es-
timation performance. Huo[63] studied these attacks on unstable and stable
systems, designing strategies to degrade state estimation performance. Fur-
thermore, Bonitz[64] proposed an attack view based on reinforcement learn-
ing to mislead the Kalman filter’s output by observation spoofing.

8. Conclusion

This paper presents a comprehensive security analysis of Error-State
Kalman Filter (ESKF) based multi-sensor fusion systems for autonomous
driving, addressing a critical gap in the existing literature. We introduced a
novel error analysis model specifically designed for ESKF-based localization
systems, revealing that errors can be represented as a linear combination
of injected signals under steady-state conditions. Leveraging this insight,
we developed an energy-efficient attack method using constrained optimiza-
tion techniques to minimize the required injection energy while achieving
targeted localization errors. Our experiments, conducted on both simulated
and real-world datasets, demonstrate the superiority of our approach com-
pared to the state-of-the-art FusionRipper method. Our optimized injection
attack achieves similar or greater levels of disruption while consuming ap-
proximately 9% less energy in simulated environments and 18% less in real-
world scenarios. Furthermore, we validated the practical applicability of our

33

method through end-to-end testing on an AI-powered autonomous driving
system, successfully causing the vehicle to deviate from its intended path and
collide with a curb.

These findings highlight the vulnerability of current ESKF-based fusion
systems to sophisticated attacks and underscore the need for robust defense
mechanisms. Future work should focus on developing countermeasures to de-
tect and mitigate such energy-efficient injection attacks, ensuring the security
and reliability of autonomous driving systems. Additionally, extending this
analysis to other sensor fusion algorithms and exploring the impact of attacks
on different driving scenarios could provide valuable insights for enhancing
overall system resilience.

Appendix A. Error-State Kalman Filter Process

First, we introduce the error-state equation:

δṗ = δv (A.1)

δv̇ = −Rt [at − bat]× δθ +Rt (na − δba) (A.2)

δθ̇ = − [ωt − bωt]× δθ + nω − δbω (A.3)

δḃa = nba (A.4)

δḃω = nbω (A.5)

where p is the position vector, v is the velocity vector, θ is the attitude
error vector, bat is the accelerometer bias, bωt is the gyroscope bias, Rt is
the rotation matrix at time t, at is the specific force vector at time t, ωt is
the angular velocity vector at time t, na is the accelerometer noise, nω is the
gyroscope noise, nba is the accelerometer bias noise, nbω is the gyroscope bias
noise, [x]× is the skew-symmetric matrix of vector x, and δ denotes small
changes or errors in the respective variables.

Let δx =

δp
δv
δθ
δba
δbω

 , w =

na

nω

nba

nbω

 , the error equation can then be written

in the general form of the state equation:

δẋ = Ftδx+Btw (A.6)

34

Pose initialization

Filter initialization

Inertial navigation

Filter prediction

Output filtered pose

Filter update

Posterior pose

computation

Have

obervations?
Reset error state

Yes

No

Figure A.15: ESKF processing flowchart

where

Ft =

0 I3 0 0 0
0 0 −Rt [at]× −Rt 0
0 0 − [ωt]× 0 −I3
0 0 0 0 0
0 0 0 0 0,

 , Bt =

0 0 0 0
Rt 0 0 0
0 I3 0 0
0 0 I3 0
0 0 0 I3

Then, we introduce the ESKF processing flowchart, as shown in Figure

A.15.
Next we explain the most important parts:

Inertial navigation.

Řk = R̂k−1

(
I +

sinϕ

ϕ
(ϕ×) + 1− cosϕ

ϕ2
(ϕ×)2

)
(A.7)

v̌k = v̂k−1 +

(
Řkak + R̂k−1ak−1

2
− g

)
(tk − tk−1) (A.8)

p̂k = p̌k−1 +
v̌k + v̂k−1

2
(tk − tk−1) (A.9)

35

where Řk is the predicted rotation matrix, R̂k−1 is the estimated rotation
matrix at the previous time step, I is the identity matrix, ϕ is the rotation
vector, v̌k is the predicted velocity, v̂k−1 is the estimated velocity at the
previous time step, ak is the specific force at time k, g is the gravity vector,
tk and tk−1 are the time steps, p̂k is the estimated position at time k, and
p̌k−1 is the predicted position at the previous time step.

Filter prediction.

δx̌k = Fk−1δx̂k−1 +Bk−1wk (A.10)

P̌k = Fk−1P̂k−1F
T
k−1 +Bk−1QkB

T
k−1 (A.11)

where δx̌k is the predicted state error, Fk−1 is the state transition matrix
at the previous time step, δx̂k−1 is the state error estimate at the previous
time step, Bk−1 is the input matrix at the previous time step, wk is the
process noise, P̌k is the predicted error covariance matrix, P̂k−1 is the error
covariance matrix estimate at the previous time step, and Qk is the process
noise covariance matrix.

Filter update.

Kk = P̌kG
T
k

(
GkP̌kG

T
k + CkRkC

T
k

)−1
(A.12)

P̂k = (I −KkGk) P̌k (A.13)

δx̂k = δx̌k +Kk (yk −Gkδx̌k) (A.14)

where Kk is the Kalman gain matrix, P̌k is the predicted error covariance
matrix, Gk is the measurement matrix, Ck is the measurement matrix for
the measurement noise, Rk is the measurement noise covariance matrix, P̂k

is the updated error covariance matrix, δx̂k is the updated state estimate
error, δx̌k is the predicted state error, and yk is the measurement vector at
time k.

Posterior pose computation.

p̂k = p̌k − δp̂k (A.15)

v̂k = v̌k − δv̂k (A.16)

R̂k = Řk

(
I −

[
δθ̂k

]
×

)
(A.17)

b̂ak = b̌ak − δb̂ak (A.18)

b̂ωk
= b̌ωk

− δb̂ωk
(A.19)

36

where p̂k is the updated position, p̌k is the predicted position, δp̂k is the
position estimate error, v̂k is the updated velocity, v̌k is the predicted velocity,
δv̂k is the velocity estimate error, R̂k is the updated rotation matrix, Řk is
the predicted rotation matrix, and δθ̂k is the rotation vector error. b̂ak is the

updated accelerometer bias, b̌ak is the predicted accelerometer bias, and δb̂a
is the accelerometer bias estimate error. b̂ωk

is the updated gyroscope bias,

b̌ωk
is the predicted gyroscope bias, and δb̂ωk

is the gyroscope bias estimate
error.

Reset error state.

δx̂k = 0 (A.20)

where δx̂k represents the state estimate error, which is set to zero.

Appendix B. Fusion Strategy Derivation

Based on the steady-state assumption, the main elements of theK matrix
are assumed to be approximately constant. To validate this assumption, we
plotted the elements of the gain matrix K, as shown in Figure B.16. From
the figure, it is evident that some elements are too small to be considered
significant, while the main elements, such as K11 and K22, are approximately
constant.

Building on the analysis presented above, we propose a refined approach
to approximate the complex calculation processes typically involved in sensor
fusion systems. By selectively focusing on the key elements of the Kalman
gain matrix K and deliberately ignoring the elements with negligible im-
pact, our method enhances computational efficiency without compromising
accuracy. This strategic simplification is particularly crucial for real-time
applications in autonomous driving systems, where computational resources
are at a premium.

The high accuracy and reliability of our proposed method have been thor-
oughly validated in Section 5.2. Through extensive simulations and real-
world testing scenarios, we have demonstrated that our approach provides
a robust theoretical foundation for further development of injection attack
strategies. These strategies aim to exploit vulnerabilities in sensor fusion
systems to test and improve their resilience against adversarial conditions.

Regarding the fusion strategy discussed in Section 4.1, we have chosen to
simplify the model by focusing solely on the states that directly influence the

37

0 10 20 30
Time (s)

0.2

0.3

0.4

0.5

Va
lu

e

K11

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 6 K12

0 10 20 30
Time (s)

0

1

2

3

Va
lu

e

1e 6 K13

0 10 20 30
Time (s)

1.0

0.5

0.0

0.5

Va
lu

e

1e 7 K14

0 10 20 30
Time (s)

0.008

0.006

0.004

0.002

0.000

Va
lu

e
K15

0 10 20 30
Time (s)

0.002

0.000

0.002

Va
lu

e

K16

0 10 20 30
Time (s)

0.2

0.3

0.4

0.5

Va
lu

e

K17

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 6 K18

0 10 20 30
Time (s)

0

1

2

3

Va
lu

e

1e 6 K19

(a) row 1

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 6 K21

0 10 20 30
Time (s)

0.2

0.3

0.4

0.5

Va
lu

e

K22

0 10 20 30
Time (s)

0.01

0.00

0.01

Va
lu

e

K23

0 10 20 30
Time (s)

0.000

0.002

0.004

0.006

0.008

Va
lu

e

K24

0 10 20 30
Time (s)

1.0

0.5

0.0

0.5

1.0

Va
lu

e

1e 7 K25

0 10 20 30
Time (s)

1.0

0.5

0.0

Va
lu

e

1e 6 K26

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 6 K27

0 10 20 30
Time (s)

0.2

0.3

0.4

0.5

Va
lu

e

K28

0 10 20 30
Time (s)

0.01

0.00

0.01

Va
lu

e

K29

(b) row 2

0 10 20 30
Time (s)

0

2

4

Va
lu

e

K41

0 10 20 30
Time (s)

1

0

1

Va
lu

e

1e 5 K42

0 10 20 30
Time (s)

0

2

4

6

Va
lu

e

1e 5 K43

0 10 20 30
Time (s)

2

1

0

1

Va
lu

e

1e 6 K44

0 10 20 30
Time (s)

0.4

0.2

0.0

Va
lu

e

K45

0 10 20 30
Time (s)

0.05

0.00

0.05

Va
lu

e

K46

0 10 20 30
Time (s)

0

2

4

Va
lu

e

K47

0 10 20 30
Time (s)

1

0

1

Va
lu

e

1e 5 K48

0 10 20 30
Time (s)

0

2

4

6

Va
lu

e

1e 5 K49

(c) row 4

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 5 K51

0 10 20 30
Time (s)

0

2

4

Va
lu

e

K52

0 10 20 30
Time (s)

0.1

0.0

0.1

0.2

0.3

Va
lu

e

K53

0 10 20 30
Time (s)

0.0

0.2

0.4

Va
lu

e

K54

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 6 K55

0 10 20 30
Time (s)

1

0

1

2

Va
lu

e

1e 5 K56

0 10 20 30
Time (s)

2

1

0

Va
lu

e

1e 5 K57

0 10 20 30
Time (s)

0

2

4

Va
lu

e

K58

0 10 20 30
Time (s)

0.1

0.0

0.1

0.2

0.3

Va
lu

e

K59

(d) row 5

Figure B.16: K matrix in the steady state

vehicle’s position. Specifically, we concentrate on the velocity components
in the x and y directions (∆X̂k(41) and ∆X̂k(51)), as well as the positional

state variables in the x and y directions (∆X̂k(11) and ∆X̂k(21)). This model
simplification allows us to streamline the Kalman filter calculations, thus
enhancing the system’s overall efficiency and responsiveness.

The detailed derivation of our simplified model is provided below, il-
lustrating how each selected state variable is updated through the filtering
process. The focus is on ensuring that the core dynamics of the system are
captured, while extraneous details that do not significantly affect the outcome
are excluded. This approach not only clarifies the underlying mathematical
structure but also aids in the practical implementation and optimization of
the sensor fusion algorithm.

38

X-direction Position. The position in the X-direction is updated by incorpo-
rating both the predicted motion and the correction based on sensor mea-
surements. This update is crucial for maintaining an accurate trajectory.
Position ∆X̂k+1(11) is affected directly by the velocity of x and y direction

∆X̂k(41), ∆X̂k(51), thus the complete update process is as follows:

∆X̂k+1(11) = ∆X̂k(11) +∆X̂k(41) · T −K15×9

∆X̂k(11) +∆X̂k(41) · T
∆X̂k(21) +∆X̂k(51) · T

∆X̂k(31)

∆X̂k(41)

∆X̂k(51)

∆X̂k(61)

∆X̂k(71) + ϵk+1 sin(θz)

∆X̂k(81) − ϵk+1 cos(θz)

∆X̂k(91)

= ∆X̂k(11) +∆X̂k(41) · T −K15×9

∆X̂k(11) +∆X̂k(41) · T
∆X̂k(21) +∆X̂k(51) · T

0

∆X̂k(41)

∆X̂k(51)

0

∆X̂k(11) + ϵk+1 sin(θz)

∆X̂k(21) − ϵk+1 cos(θz)
0

= (1−K11 −K17)∆X̂k(11) + (1−K11)T ·∆X̂k(41)−
K17ϵk+1 sin(θz) (B.1)

Y-direction Position. For the Y-direction, similar principles apply:

∆X̂k+1(21) = (1−K22 −K28)∆X̂k(21) + (1−K22)T ·∆X̂k(51)+

K28ϵk+1 cos(θz) (B.2)

39

X-direction Velocity. Updating the velocity in the X-direction involves pro-
cessing the position and velocity at last step:

∆X̂k+1(41) = ∆X̂k(41) −K15×9

∆X̂k(11) +∆X̂k(41) · T
∆X̂k(21) +∆X̂k(51) · T

0

∆X̂k(41)

∆X̂k(51)

0

∆X̂k(71) + ϵk+1 sin(θz)

∆X̂k(81) − ϵk+1 cos(θz)
0

= ∆X̂k(41) −K15×9

∆X̂k(11) +∆X̂k(41) · T
∆X̂k(21) +∆X̂k(51) · T

0

∆X̂k(41)

∆X̂k(51)

0

∆X̂k(11) + ϵk+1 sin(θz)

∆X̂k(21) − ϵk+1 cos(θz)
0

= (−K41 −K47)∆X̂k(11) + (1−K41T −K44) ·∆X̂k(41)−
K45 ·∆X̂k(51) −K47ϵk+1 sin(θz) (B.3)

Y-direction Velocity. For the Y-velocity, similar principles apply:

∆X̂k+1(51) = (−K52 −K58)∆X̂k(21) + (1−K52T −K55) ·∆X̂k(51)−
K54 ·∆X̂k(41) +K58ϵk+1 cos(θz) (B.4)

Appendix C. List of Symbols

The following symbols are used throughout this paper to describe the
mathematical models and algorithms in the analysis of error-state Kalman
filters for autonomous systems. The definitions provided aim to facilitate a
clearer understanding of the mathematical formulations and their applica-
tions.

40

Symbol Description Units

ˇ Prior state -
ˆ Posterior state -
δx Estimate error state -
δp Position error state meters (m)
δv Velocity error state meters per second (m/s)
δθ Attitude error state radians (rad)
δba Accelerometer bias error state meters per second squared (m/s2)
δbω Gyroscope bias error state radians per second (rad/s)
Rt Rotation matrix at time t -
at Specific force vector at time t meters per second squared (m/s2)
ωt Angular velocity vector at time t radians per second (rad/s)
bat Accelerometer bias at time t meters per second squared (m/s2)
bωt Gyroscope bias at time t radians per second (rad/s)

na, nω Accelerometer and gyroscope noise -
[x]× Skew-symmetric matrix of vector x -

Table C.2: Symbol definitions used in the Error-State Kalman Filter.

Symbol Description Units

ˇ Prior state -
ˆ Posterior state -

∆Xk Offset of state estimate at step k -

∆X̂k(11) Offset in X-direction position estimate meters (m)

∆X̂k(21) Offset in Y-direction position estimate meters (m)

∆X̂k(41) Offset in X-direction velocity estimate meters per second (m/s)

∆X̂k(51) Offset in Y-direction velocity estimate meters per second (m/s)
K15×9 Kalman gain matrix with dimensions 15× 9 -
Kij Element of the Kalman gain matrix at row i, column j -
dt Target deviation at time t meters(m)
T Time interval between updates seconds (s)
θz Rotation angle of z-direction radians (rad)
ϵk Inject signals at step k meters(m)

Table C.3: Symbol definitions used in the Security Analysis.

41

References

[1] Waymo, Waymo - fully autonomous driving technology, https://

waymo.com/, accessed: Aug. 2024 (2024).

[2] Baidu, Apollo autonomous driving platform, https://github.com/

ApolloAuto/apollo, accessed: Aug. 2024 (2024).

[3] Autoware Foundation, Autoware, https://autoware.org/, accessed:
Aug. 2024 (2024).

[4] Y. Deng, T. Zhang, G. Lou, X. Zheng, J. Jin, Q.-L. Han, Deep learning-
based autonomous driving systems: A survey of attacks and defenses,
IEEE Transactions on Industrial Informatics 17 (12) (2021) 7897–7912.

[5] J. Shen, N. Wang, Z. Wan, Y. Luo, T. Sato, Z. Hu, X. Zhang, S. Guo,
Z. Zhong, K. Li, et al., Sok: On the semantic ai security in autonomous
driving, arXiv preprint arXiv:2203.05314 (2022).

[6] D. Yu, S. Lee, R.-H. Hsu, J. Lee, Ensuring end-to-end security with
fine-grained access control for connected and autonomous vehicles, IEEE
Transactions on Information Forensics and Security (2024).

[7] T. G. Reid, S. E. Houts, R. Cammarata, G. Mills, S. Agarwal, A. Vora,
G. Pandey, Localization requirements for autonomous vehicles, arXiv
preprint arXiv:1906.01061 (2019).

[8] J. Levinson, M. Montemerlo, S. Thrun, Map-based precision vehicle
localization in urban environments., in: Robotics: science and systems,
Vol. 4, Atlanta, GA, USA, 2007, pp. 121–128.

[9] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, D. Song, Robust physical-world attacks on deep
learning visual classification, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2018, pp. 1625–1634.

[10] D. Song, K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati,
F. Tramer, A. Prakash, T. Kohno, Physical adversarial examples for
object detectors, in: 12th USENIX workshop on offensive technologies
(WOOT 18), 2018.

42

https://waymo.com/
https://waymo.com/
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo
https://autoware.org/

[11] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, Z. M. Mao, Adversarial sensor attack on lidar-based perception
in autonomous driving, in: Proceedings of the 2019 ACM SIGSAC con-
ference on computer and communications security, 2019, pp. 2267–2281.

[12] Y. Zhao, H. Zhu, R. Liang, Q. Shen, S. Zhang, K. Chen, Seeing isn’t
believing: Towards more robust adversarial attack against real world
object detectors, in: Proceedings of the 2019 ACM SIGSAC conference
on computer and communications security, 2019, pp. 1989–2004.

[13] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen,
M. Liu, B. Li, Invisible for both camera and lidar: Security of multi-
sensor fusion based perception in autonomous driving under physical-
world attacks, in: 2021 IEEE symposium on security and privacy (SP),
IEEE, 2021, pp. 176–194.

[14] J. Shen, J. Y. Won, Z. Chen, Q. A. Chen, Drift with devil: Security of
{Multi-Sensor} fusion based localization in {High-Level} autonomous
driving under {GPS} spoofing, in: 29th USENIX security symposium
(USENIX Security 20), 2020, pp. 931–948.

[15] S. Kochanthara, T. Singh, A. Forrai, L. Cleophas, Safety of perception
systems for automated driving: A case study on apollo, ACM Transac-
tions on Software Engineering and Methodology 33 (3) (2024) 1–28.

[16] J. Liu, J.-M. Park, “seeing is not always believing”: detecting percep-
tion error attacks against autonomous vehicles, IEEE Transactions on
Dependable and Secure Computing 18 (5) (2021) 2209–2223.

[17] J. Sun, Y. Cao, Q. A. Chen, Z. M. Mao, Towards robust {LiDAR-based}
perception in autonomous driving: General black-box adversarial sensor
attack and countermeasures, in: 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 877–894.

[18] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, C. Qiao, Can we use
arbitrary objects to attack lidar perception in autonomous driving?, in:
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1945–1960.

[19] Y. Zhu, C. Miao, H. Xue, Y. Yu, L. Su, C. Qiao, Malicious attacks
against multi-sensor fusion in autonomous driving, in: Proceedings of

43

the 30th Annual International Conference on Mobile Computing and
Networking, 2024, pp. 436–451.

[20] Y. Chen, Y. Huai, S. Li, C. Hong, J. Garcia, Misconfiguration software
testing for failure emergence in autonomous driving systems, Proceed-
ings of the ACM on Software Engineering 1 (FSE) (2024) 1913–1936.

[21] S. Kim, M. Liu, J. J. Rhee, Y. Jeon, Y. Kwon, C. H. Kim, Drivefuzz:
Discovering autonomous driving bugs through driving quality-guided
fuzzing, in: Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, 2022, pp. 1753–1767.

[22] G. Lou, Y. Deng, X. Zheng, M. Zhang, T. Zhang, Testing of autonomous
driving systems: where are we and where should we go?, in: Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2022, pp. 31–
43.

[23] S. Tang, Z. Zhang, Y. Zhang, J. Zhou, Y. Guo, S. Liu, S. Guo, Y.-F. Li,
L. Ma, Y. Xue, et al., A survey on automated driving system testing:
Landscapes and trends, ACM Transactions on Software Engineering and
Methodology 32 (5) (2023) 1–62.

[24] G. Wan, X. Yang, R. Cai, H. Li, Y. Zhou, H. Wang, S. Song, Robust
and precise vehicle localization based on multi-sensor fusion in diverse
city scenes, in: 2018 IEEE international conference on robotics and
automation (ICRA), IEEE, 2018, pp. 4670–4677.

[25] A. Soloviev, Tight coupling of gps, laser scanner, and inertial measure-
ments for navigation in urban environments. in 2008 ieee/ion position,
location and navigation symposium (pp. 511–525) (2008).

[26] J. Kelly, G. S. Sukhatme, Visual-inertial sensor fusion: Localization,
mapping and sensor-to-sensor self-calibration, The International Journal
of Robotics Research 30 (1) (2011) 56–79.

[27] Z. Tao, P. Bonnifait, V. Fremont, J. Ibanez-Guzman, Mapping and lo-
calization using gps, lane markings and proprioceptive sensors, in: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2013, pp. 406–412.

44

[28] Y. Gao, S. Liu, M. M. Atia, A. Noureldin, Ins/gps/lidar integrated
navigation system for urban and indoor environments using hybrid scan
matching algorithm, Sensors 15 (9) (2015) 23286–23302.

[29] J. K. Suhr, J. Jang, D. Min, H. G. Jung, Sensor fusion-based low-cost ve-
hicle localization system for complex urban environments, IEEE Trans-
actions on Intelligent Transportation Systems 18 (5) (2016) 1078–1086.

[30] M. Schreiber, H. Königshof, A.-M. Hellmund, C. Stiller, Vehicle local-
ization with tightly coupled gnss and visual odometry, in: 2016 IEEE
Intelligent Vehicles Symposium (IV), IEEE, 2016, pp. 858–863.

[31] F. de Ponte Müller, Survey on ranging sensors and cooperative tech-
niques for relative positioning of vehicles, Sensors 17 (2) (2017) 271.

[32] I. Brigadnov, A. Lutonin, K. Bogdanova, Error state extended kalman
filter localization for underground mining environments, Symmetry
15 (2) (2023) 344.

[33] N. Davari, A. Gholami, Variational bayesian adaptive kalman filter
for asynchronous multirate multi-sensor integrated navigation system,
Ocean Engineering 174 (2019) 108–116.

[34] S. Fakoorian, A. Santamaria-Navarro, B. T. Lopez, D. Simon, A.-a.
Agha-mohammadi, Towards robust state estimation by boosting the
maximum correntropy criterion kalman filter with adaptive behaviors,
IEEE Robotics and Automation Letters 6 (3) (2021) 5469–5476.

[35] Z. Li, Y. Zhang, Constrained eskf for uav positioning in indoor corridor
environment based on imu and wifi, Sensors 22 (1) (2022) 391.

[36] A. Mikov, A. Panyov, V. Kosyanchuk, I. Prikhodko, Sensor fusion for
land vehicle localization using inertial mems and odometry, in: 2019
IEEE International Symposium on Inertial Sensors and Systems (IN-
ERTIAL), IEEE, 2019, pp. 1–2.

[37] A. I. Mourikis, S. I. Roumeliotis, A multi-state constraint kalman filter
for vision-aided inertial navigation, in: Proceedings 2007 IEEE interna-
tional conference on robotics and automation, IEEE, 2007, pp. 3565–
3572.

45

[38] S. Piperakis, D. Kanoulas, N. G. Tsagarakis, P. Trahanias, Outlier-
robust state estimation for humanoid robots, in: 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), IEEE,
2019, pp. 706–713.

[39] S. I. Roumeliotis, G. S. Sukhatme, G. A. Bekey, Circumventing dynamic
modeling: Evaluation of the error-state kalman filter applied to mobile
robot localization, in: Proceedings 1999 IEEE International Conference
on Robotics and Automation (Cat. No. 99CH36288C), Vol. 2, IEEE,
1999, pp. 1656–1663.

[40] J. Sola, Quaternion kinematics for the error-state kf, Laboratoire dAnal-
yse et dArchitecture des Systemes-Centre national de la recherche sci-
entifique (LAAS-CNRS), Toulouse, France, Tech. Rep (2012) 35.

[41] J. Sola, Quaternion kinematics for the error-state kalman filter, arXiv
preprint arXiv:1711.02508 (2017).

[42] A. Soliman, G. A. Ribeiro, A. Torres, M. Rastgaar, Error-state kalman
filter for online evaluation of ankle angle, in: 2022 IEEE/ASME Interna-
tional Conference on Advanced Intelligent Mechatronics (AIM), IEEE,
2022, pp. 225–231.

[43] Y. Yin, J. Zhang, M. Guo, X. Ning, Y. Wang, J. Lu, Sensor fusion
of gnss and imu data for robust localization via smoothed error state
kalman filter, Sensors 23 (7) (2023) 3676.

[44] W. Zhen, S. Zeng, S. Soberer, Robust localization and localizability
estimation with a rotating laser scanner, in: 2017 IEEE international
conference on robotics and automation (ICRA), IEEE, 2017, pp. 6240–
6245.

[45] S. Nashimoto, D. Suzuki, T. Sugawara, K. Sakiyama, Sensor con-fusion:
Defeating kalman filter in signal injection attack, in: Proceedings of the
2018 on Asia Conference on Computer and Communications Security,
2018, pp. 511–524.

[46] J. Chang, L. Zhang, L.-T. Hsu, B. Xu, F. Huang, D. Xu, Analytic mod-
els of a loosely coupled gnss/ins/lidar kalman filter considering update
frequency under a spoofing attack, IEEE Sensors Journal 22 (23) (2022)
23341–23355.

46

[47] J. Chang, F. Huang, L. Zhang, D. Xu, L.-T. Hsu, Selection of areas for
effective gnss spoofing attacks to a vehicle-mounted msf system based
on scenario classification models, IEEE Transactions on Vehicular Tech-
nology 72 (11) (2023) 14645–14655.

[48] S. 2017, Apollo shenlan, https://github.com/shenlan2017/Apollo_
ShenLan, accessed: Aug. 2024 (2024).

[49] Aceinna, Gnss-ins-sim: An open-source gnss/ins simulation platform,
https://github.com/Aceinna/gnss-ins-sim, accessed: Aug. 2024
(2024).

[50] SciPy, Scipy - scientific computing tools for python, https://scipy.
org/, accessed: Aug. 2024.

[51] ApolloAuto, Apollo: An open autonomous driving platform, https:

//github.com/ApolloAuto/apollo/tree/v6.0_edu, accessed: Aug.
2024 (2024).

[52] T. Trippel, O. Weisse, W. Xu, P. Honeyman, K. Fu, Walnut: Waging
doubt on the integrity of mems accelerometers with acoustic injection
attacks, in: 2017 IEEE European symposium on security and privacy
(EuroS&P), IEEE, 2017, pp. 3–18.

[53] X. Ji, Y. Cheng, Y. Zhang, K. Wang, C. Yan, W. Xu, K. Fu, Poltergeist:
Acoustic adversarial machine learning against cameras and computer
vision, in: 2021 IEEE Symposium on Security and Privacy (SP), IEEE,
2021, pp. 160–175.

[54] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng,
R. Urtasun, Physically realizable adversarial examples for lidar object
detection, in: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2020, pp. 13716–13725.

[55] Z. Jin, X. Ji, Y. Cheng, B. Yang, C. Yan, W. Xu, Pla-lidar: Physical
laser attacks against lidar-based 3d object detection in autonomous ve-
hicle, in: 2023 IEEE Symposium on Security and Privacy (SP), IEEE,
2023, pp. 1822–1839.

47

https://github.com/shenlan2017/Apollo_ShenLan
https://github.com/shenlan2017/Apollo_ShenLan
https://github.com/Aceinna/gnss-ins-sim
https://scipy.org/
https://scipy.org/
https://github.com/ApolloAuto/apollo/tree/v6.0_edu
https://github.com/ApolloAuto/apollo/tree/v6.0_edu

[56] Y. Li, C. Wen, F. Juefei-Xu, C. Feng, Fooling lidar perception via ad-
versarial trajectory perturbation, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 7898–7907.

[57] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, Y. Yang,
All your {GPS} are belong to us: Towards stealthy manipulation of road
navigation systems, in: 27th USENIX security symposium (USENIX
security 18), 2018, pp. 1527–1544.

[58] H. Sathaye, M. Strohmeier, V. Lenders, A. Ranganathan, An experimen-
tal study of {GPS} spoofing and takeover attacks on {UAVs}, in: 31st
USENIX security symposium (USENIX security 22), 2022, pp. 3503–
3520.

[59] J. Su, J. He, P. Cheng, J. Chen, A stealthy gps spoofing strategy
for manipulating the trajectory of an unmanned aerial vehicle, IFAC-
PapersOnLine 49 (22) (2016) 291–296.

[60] Z. Zhang, L. Zhou, P. Tokekar, Strategies to inject spoofed measurement
data, arXiv preprint arXiv:1809.04756 (2018).

[61] Y.-G. Li, G.-H. Yang, Optimal stealthy false data injection attacks in
cyber-physical systems, Information Sciences 481 (2019) 474–490.

[62] Y. Guo, M. Wu, K. Tang, J. Tie, X. Li, Covert spoofing algorithm of uav
based on gps/ins-integrated navigation, IEEE Transactions on Vehicular
Technology 68 (7) (2019) 6557–6564.

[63] J.-R. Huo, X.-J. Li, False data injection attacks on sensors against state
estimation in cyber-physical systems, Journal of the Franklin Institute
360 (9) (2023) 6110–6130.

[64] D. A. Bonitz, Using reinforcement learning to spoof a monitored kalman
filter, Ph.D. thesis, Monterey, CA; Naval Postgraduate School (2022).

48

	Introduction
	Problem Formulation
	Multi-Sensor Fusion
	Threat Model

	Security Analysis of MSF Model Under Injection Attack
	Preliminary Setup
	Analytical Framework
	Single-Cycle State Deviation Analysis
	Extending State Deviation to N-Cycle Injections

	Optimized Injection Attack Methodology
	Fusion Strategy
	Constrained Optimization

	Experiments
	Setup
	Verification of Model Accuracy
	Constant Injection Attack
	Incremental Injection Attack

	Injection Attack Method Comparison
	Optimal Attack Params
	Attack Methods Comparison

	Attack Effectiveness
	Experimental Setup
	Results

	Attack Robustness
	Inaccuracy Sources and Modeling
	Experimental Setup
	Results

	Ablation Study
	Experimental Setup
	Comparison of Model Accuracy

	End-to-end Experiment for AI-powered Autonomous Driving System

	Limitations And Defense Discussions
	Limitations
	Defense Discussions

	Related Work
	Conclusion
	Error-State Kalman Filter Process
	Fusion Strategy Derivation
	List of Symbols

