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Abstract—The widespread adoption of face recognition has raised
privacy concerns regarding the collection and use of facial data. To
address this, researchers have explored “unlearnable examples” by
adding imperceptible perturbations during model training to prevent
the model from learning target features. However, current methods are
inefficient and cannot guarantee transferability and robustness at the
same time, causing impracticality in the real world. To remedy it, we
introduce Side-information Guided Generative Unlearnable Examples
(Segue). Using a once-trained multiple-used model to generate pertur-
bations, Segue avoids the time-consuming gradient-based approach. To
improve transferability, we introduce side information such as true or
pseudo labels, which are inherently consistent across different scenarios.
For robustness enhancement, a distortion layer is integrated into the
training pipeline. Experiments show Segue is 1000× faster than previous
methods, transferable across datasets and models, and resistant to JPEG
compression, adversarial training, and standard augmentations.

Index Terms—Information security, Face recognition, Privacy protec-
tions.

I. INTRODUCTION

The rise of social media platforms like Twitter and Facebook has
led to an increase in publicly shared facial data for fun or commercial
purposes. This also facilitates the unauthorized collection of facial
data, violating public privacy [1], [2]. Such data can be used to
train face analysis models, including face recognition systems [3]–[6],
posing a threat to security-critical applications such as authentication
systems [7], [8]. Malicious actors can further exploit this technology
using drones or surveillance cameras to track and monitor individuals,
which not only infringes on personal privacy but also endangers
personal safety. Thus, it’s crucial to protect individual faces from
unauthorized use.

Recent works utilize unlearnable examples [9]–[11] for facial pri-
vacy protection. In this approach, the defender applies perturbations
to the original image, generating unlearnable examples. When facial
recognition (FR) models are trained on these modified images, they
fail to recognize individuals using drones or surveillance cameras
accurately. This technique exploits neural networks’ tendency to
rely on shortcuts as discriminative features [12], with the added
perturbation serving as such a shortcut. In conclusion, unlearnable
examples provide an effective means of safeguarding facial privacy.

To generate practical unlearnable facial examples, five key re-
quirements must be met: 1) Effectiveness: The facial recognition
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model should fail to recognize clean examples, with accuracy re-
duced to random guessing. 2) Imperceptibility: Perturbations must
be invisible, making unlearnable examples indistinguishable from
clean ones. However, some methods [13] generate visually notice-
able perturbations. 3) Transferability: Perturbations should transfer
across different datasets [5], [6], [14] and model architectures [15]–
[17]. However, gradient-based methods [9]–[11] are limited to fixed
categories and depend on target model gradients, making them
impractical in black-box settings. 4) Robustness: Perturbations must
resist transmission distortions (e.g., JPEG compression) and adaptive
attacks like adversarial training [18], but many methods [9], [11] fail
to do so. 5) Efficiency: Fast generation is crucial for online use, yet
gradient-based methods [9]–[11] are computationally costly. Existing
methods [9]–[11] fail to meet all these criteria, particularly in terms
of efficiency, transferability, and robustness, limiting their practice
for facial privacy protection.

To address the limitations of existing methods, we propose Segue,
a side-information-guided generative unlearnable examples approach.
Unlike previous iterative gradient optimization methods, Segue lever-
ages an auto-encoder model to generate perturbations, enabling a
once-trained, multi-use capability efficiently. Furthermore, we con-
strain the perturbation using L2 loss to ensure imperceptibility. To
enhance transferability, we incorporate side information, utilizing true
labels when available, or pseudo labels from K-means clustering
[19] for unlabeled datasets. Moreover, a distortion layer is added to
simulate real-world transmission distortions (e.g., JPEG compression,
blurring) and adversarial training, further enhancing robustness.

We conduct extensive experiments demonstrating that Segue suc-
cessfully meets the five requirements mentioned above. Our method
significantly reduces the attacker’s model recognition capability,
achieving 11.5% accuracy on VGGFace10, compared to previous
methods, which only reduce accuracy to 20.5%. Additionally, we
assess transferability across six model architectures and five facial
datasets, where Segue outperforms in most cases. Regarding robust-
ness, Segue can withstand adversarial training with varying intensities
and multiple distortions. Furthermore, Segue is significantly faster
than existing methods [9]–[11] (1000×). Ablation studies further
validate our design.

II. PRELIMINARY

A. Formalized Description

We can divide a clean dataset D = {(xi, yi)}ni=1 into a training set
Dtrain and a testing set Dtest. Huang et al. [9] propose a bi-level
objective to generate perturbations to prevent the face recognition
(FR) model from learning anything from the training data. They use
the following objective function:
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Fig. 1. The overall framework of Segue. The generator comprises an encoder and decoder, fusing the image and side information in the feature space.
Side information is either the true label (supervised) or the pseudo label (unsupervised). The distortion layer enhances the robustness of δ. The generator and
surrogate model are trained alternately.

argmin
f

E(x,y)∼Dtrain

[
min
δ
L (f(x+ δ), y)

]
, (1)

where the modified image x+δ is called as the unlearnable example.
f acts as a surrogate model for the target model. The perturbation δ
is bounded by ∥G(x)∥p ≤ ϵ to guarantee that it is imperceptible to
human eyes.

B. Threat Model

Following current methods, we assume that the attacker wants to
train a FR model but only has access to the unlearnable examples
instead of Dtrain. To boost the model performance, the attacker
may apply data augmentation techniques, such as Cutout, Mixup,
and CutMix. Besides, the attacker may also use adversarial training.
Besides, we consider a black-box scenario, where the defender has
no knowledge of the target model, including parameters and archi-
tectures, used by the attacker. Instead, we use a surrogate model f as
an approximation. We can use the dataset labels as side information
if we have them. However, the dataset labels are not necessary. We
only need to know the number of identities K in the dataset, which
is used to cluster the image features and obtain the pseudo labels. We
describe this process in more detail in the next section. Our goal is to
protect the user’s facial privacy. To do this, we optimize δ following
Eq. (1) and add δ to Dtrain to prevent the attacker from learning
useful information from it. As a result, the FR model trained with
the unlearnable dataset fails to recognize the images in Dtest since
the distributions have changed between them.

III. METHOD

This section covers side information, the once-trained multiple-use
generator, the distortion layer, and the two-stage training strategy.

A. The Design of Side Information

Linear separability allows samples to be easily distinguished by
linear models. Yu et al. [13] show that perturbations in training-stage
availability attacks [9], [20] are linearly separable, making models
learn the noise instead of image information.

Strong linear separability is achieved by adding class-wise per-
turbations, such as applying δi to all samples of class i. Huang
et al. [9] note that random class-wise perturbations prevent models
from learning useful information and enhance transferability. To
improve transferability, increasing linear separability using true labels
(supervised) or unlabeled facial data (unsupervised) is effective.

Algorithm 1 Two-stage Training Strategy
Input: image x, side information ŷ, dataset D, distortion layer T ,

generator G, surrogate model f , learning rate αf and αG

Output: generator G
1: for epoch = 1 to E do
2: if epoch%5 = 1 then
3: for i = 1 to maxiter do
4: Sample (xi, yi) ∼ D
5: δi ← Clip(G(xi),−ϵ, ϵ)
6: x′

i ← xi + δi
7: θf,i+1 ← θf,i − αf∇θf,iLf (f(x

′
i), ŷi)

8: end for
9: else

10: for i = 1 to maxiter do
11: Sample (xi, yi) ∼ D
12: δi ← Clip(G(xi),−ϵ, ϵ)
13: x′

i ← xi + δi
14: θG,i+1 ← θG,i − αG∇θG,iLG(f(x

′
i), ŷi)

15: end for
16: end if
17: end for

1) Supervised Scenario: In the supervised scenario, we use dataset
labels as side information. Following [21], we concatenate label
embeddings with image embeddings in the high-level feature space
to guide generation and reduce the channel dimension C+C′ back to
C using an extra convolution layer. The label embedding is a 16-bit
binary vector, e.g., 0. . . 0101 for label y = 5. This supports up to
216 identities, adaptable to various datasets [5], [6], [14], and can be
adjusted based on the number of classes.

2) Unsupervised Scenario: To address the lack of labels, we gen-
erate pseudo labels using an unsupervised approach [22]. We extract
facial features with a model trained on CelebA [6], apply K-means
clustering [19] to group them into K clusters, and assign pseudo
labels. These pseudo labels are then concatenated with image features
as in the supervised scenario. This eliminates manual labeling and
only requires knowing the number of classes K. Our method remains
effective as long as clustering accuracy exceeds 80%, ensuring robust
transferability across datasets and models.



TABLE I
COMPARISON OF EFFECTIVENESS (CLEAN TEST ACC % ↓) AMONG

METHODS USING RESNET18 ON FIVE DATASETS.
Methods WebFace10 WebFace50 VGGFace10 CIFAR10 ImageNet10
CLEAN 75.00 80.60 83.00 91.67 71.00
UE [9] 12.50 3.50 20.50 19.93 30.00

LSP [13] 31.50 9.30 57.50 17.07 28.50
RUE [10] 11.50 7.40 30.00 15.18 24.50
TUE [11] 33.50 11.20 82.00 11.25 60.50

Ours 10.50 2.50 11.50 10.12 14.00

TABLE II
EFFECTIVENESS ON LARGER DATASETS (CLEAN TEST ACC % ↓).

Methods WebFace500 VGGFace400 CelebA500

CLEAN 82.74 78.60 80.60
Ours 0.23 1.09 3.73

B. Once-trained Multiple-used Generator

As shown in Fig. 1, the generator G encodes the input into
an embedding, fuses it with the guide embedding, and decodes it
into a perturbation δ using 3×3 convolutions, batch normalization,
and ReLU activation. Unlike previous methods [9], [11] that di-
rectly optimize perturbations, we optimize a generator to produce
perturbations based on inputs. This allows generating perturbations
for different datasets with one generator, improving efficiency over
existing methods that require retraining for each dataset.

C. Distortion Layer

Inspired by RUE [10], which adopts a min-min-max framework to
introduce adversarial training and increase the difficulty of perturba-
tion generation, we incorporate a distortion layer to simulate potential
distortions that may weaken the protective effect of perturbations.

In fact, adversarial training can be viewed as a form of data
augmentation. Therefore, we enhance the data through a distortion
layer that applies adversarial training, Gaussian blurring, random
flips, and more (see Fig. 1).

D. Two-stage Training Strategy

As shown in Alg. 1, we alternately train the surrogate model f
(ResNet18 by default) and the generator G. In the first stage, we train
f for maxiter iterations using the loss Lf to ensure the perturbed
image x+G(x) is correctly classified as ŷ:

Lf = CE(f(x+G(x)), ŷ), (2)

where ŷ includes true or pseudo labels, and CE is the Cross-Entropy
loss. In the second stage, we update G for four epochs. The loss
function for G includes two terms: LG1, which reduces the loss of f
on unlearnable examples, and LG2, which constrains the perturbation
magnitude:

LG = α · LG1 + β · LG2, (3)

LG1 = CE(f(x+G(x)), ŷ), LG2 = Ex(∥G(x)∥2) (4)

where α and β control the weight of each term. Training ends after
20 epochs or when the loss of f on the unlearnable examples drops
below 0.001.

IV. EXPERIMENTS

We evaluate Segue on effectiveness, imperceptibility, transferabil-
ity, robustness, and efficiency, comparing it with current methods to
demonstrate its advantages. Ablation studies are also provided.

TABLE III
COMPARISON OF IMPERCEPTIBILITY ON WEBFACE10.

Methods PSNR(↑) SSIM(↑) MSSSIM(↑) LPIPS(↓) MAE(↓) RMSE(↓)
UE [9] 32.37 0.754 0.973 0.205 0.0219 0.0241

LSP [13] 31.53 0.968 0.974 0.049 0.0254 0.0265
RUE [10] 32.45 0.763 0.977 0.188 0.0186 0.0212
TUE [11] 30.18 0.651 0.952 0.310 0.0308 0.0309

Ours 30.54 0.673 0.980 0.047 0.0224 0.0248

clean UE LSP

OursRUE TUE

Fig. 2. Visualization of different unlearnable examples and the corresponding
residual compared with the clean image.

A. Experimental Settings

1) Datasets: We use three facial datasets: WebFace [5], VG-
GFace2 [14], and CelebA [6] and two non-facial datasets: CIFAR10
[23] and ImageNet10 [24]. Besides, we randomly select categories
for sub-datasets (e.g., WebFace10 with 10 categories) and resize all
images to 224×224 (except for CIFAR10, which remains at 32×32).

2) Metric: We use clean test accuracy, which measures model per-
formance on clean examples after training on unlearnable examples.
Lower accuracy indicates more effective unlearnable examples. Ac-
curacy close to 100%

#IDs
suggests the model learns nothing, resembling

random guessing.
3) Baselines: We compare our method with three grad-based

approaches: UE [9], RUE [10], and TUE [11], and the model-agnostic
LSP [13], using their official code.

4) Implementation Details: We constrain the perturbation to
∥δ∥∞ ≤ ϵ = 8

255
and employ the Adam optimizer with an initial

learning rate of 0.0005. The parameters α and β in Eq. (3) are set
to 1 and 0.001, respectively. ResNet18 and WebFace10 are used as
defaults. The distortion layer includes adversarial training, Gaussian
blur, sharpness adjustment, random horizontal flips, and random
vertical flips. For adversarial training, we use a default perturbation
size ρd = 1

255
, which is varied between ρd = 0

255
and ρd = 4

255

in robustness experiments. Gaussian blur uses a (3,3) kernel with
sigma 0.2, and the sharpness factor is set to 2. The probabilities for
horizontal and vertical flips are both 0.1.

B. Effectiveness and Imperceptibility

Tab. I shows that our method achieves the best performance across
three facial datasets, successfully reducing accuracy to approximately
100%
#IDs

. Variations in results are due to dataset characteristics: Web-
Face50 has more categories, increasing classifier difficulty and lower-
ing accuracy, while VGGFace10’s higher image quality makes feature
learning easier, resulting in higher accuracy. Tab. II presents results
on larger datasets. We trained the noise generator on WebFace500 and
applied it to WebFace500 and two unseen datasets, demonstrating that
our method is both effective and transferable. Quantitative results are
provided in Tab. III, and visual examples with perturbations magnified
30× are shown in Fig. 2. As indicated in Tab. III, our method achieves
visual quality comparable to current baseline methods.

C. Transferability

1) Different Models: All methods generate unlearnable examples
using ResNet18 as the surrogate model, testing transferability across
five architectures. As shown in Tab. IV, our method consistently
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Fig. 3. (1) Robustness to JPEG compression (lower quality = higher compression). (2) Robustness to data augmentations. (3) Effect of side information on
transferability. (4) Effect of side information on surrogate model training loss. Lower values indicate better performance.

TABLE IV
TRANSFERABILITY ACROSS MODELS (CLEAN TEST ACCURACY % ↓).

DEFENDERS USE RESNET18, WHILE ATTACKERS USE FIVE MODELS: RS
(RESNET), MN (MOBILENET), I (INCEPTION), EN (EFFICIENTNET), AND

ST (SWIN TRANSFORMER).

Methods RN18 RN50 MN I-v3 EN-b1 ST
UE [9] 14.50 14.50 15.50 73.00 28.00 25.50

LSP [13] 31.50 32.50 18.50 56.00 52.50 16.50
RUE [10] 19.00 27.50 17.00 77.00 27.00 21.50
TUE [11] 33.50 70.00 15.50 69.00 67.50 16.00

Ours 10.50 12.50 11.00 10.50 12.00 14.50

TABLE V
TRANSFERABILITY ACROSS DATASETS (CLEAN TEST ACC % ↓).
WEBFACE10 PERTURBATIONS APPLIED TO OTHER DATASETS.

Methods WebFace10 WebFace10† WebFace50 VGGFace10 CelebA10
UE [9] 12.50 14.50 \ 21.50 44.00

LSP [13] 31.50 35.00 9.30 57.50 74.00
RUE [10] 17.00 26.50 \ 78.50 78.50
TUE [11] 33.50 52.00 \ 53.00 59.00

Ours 10.50 11.50 13.50 13.00 17.00

outperforms others, particularly on deeper networks like Inception-
V3, where traditional methods fail in privacy protection. This is
likely because Inception-V3 employs multiple convolutional kernels
to capture multi-scale image features. In contrast, conventional un-
learnable noise is constrained by the surrogate model’s structure and
overlooks multi-scale linear consistency. Our approach leverages side
information to generate noise, maintaining linear consistency across
different convolutional scales.

2) Different Datasets: In Tab. V, we generate perturbations us-
ing WebFace10 and evaluate them across various datasets. Despite
CelebA10’s smaller class sizes, which demand higher linear separa-
bility, our method reduces accuracy to 17%. In contrast, TUE and
UE fail to transfer perturbations to WebFace50 due to their fixed
perturbation size during training, restricting their transferability to
smaller datasets and limiting their broader applicability.

D. Robustness

1) Adversarial Training: Adversarial training effectively removes
non-robust noise from inputs [18]. The attacker applies adversarial
training with ρa to mitigate perturbations, while we use ρd in the
distortion layer to enhance perturbation robustness. When both ρa
and ρd are 0, neither party employs adversarial training. As shown in
Tab. VI, our method maintains strong performance, achieving 16.5%
clean data accuracy even when the attacker uses ρa = 4/255.

2) JPEG Compression: Lower JPEG compression quality de-
grades image quality and weakens unlearnable perturbation protec-
tion. Fig. 3 (1) shows that our method remains effective across all
quality levels, while others fail under low-quality conditions.

TABLE VI
ROBUSTNESS AGAINST ADVERSARIAL TRAINING (CLEAN TEST ACC % ↓).

PERTURBATION BUDGET: ATTACKER ρa , DEFENDER ρd .

Adv. Train. Clean UE RUE Ours

ρa ρd=0 2/255 4/255 ρd=0 2/255 4/255
0 75.00 12.50 11.50 13.00 14.50 10.50 12.50 13.50

1/255 68.00 18.00 17.50 15.50 17.50 13.50 11.50 12.50
2/255 65.00 69.00 26.00 19.50 22.50 15.50 15.00 12.50
3/255 63.50 74.50 69.50 61.50 58.00 29.00 16.00 14.50
4/255 65.50 69.50 71.00 62.00 63.00 34.00 21.00 16.50

TABLE VII
COMPARISON OF EFFICIENCY ON WEBFACE10.

Methods UE [9] LSP [13] RUE [10] TUE [11] Ours
Time (s) ∼2.1k 4.5 ∼6.7k ∼7.4k 2.2

3) Data Augmentation: We apply augmentations as follows: Gaus-
sian blurring with a kernel size of 5 and standard deviation of
1.0; Cutout [25] with two patches, each 112 pixels (half the image
size); Mixup [26], mixing random image pairs with λ from a beta
distribution [0,1]; and CutMix [27], using Mixup on the Cutout
region with the same settings. Fig. 3 (2) demonstrates our method’s
robustness to all these augmentations.

E. Efficiency

We use a server with a single A6000 GPU and an Intel Xeon Gold
6130 CPU. Our method requires only one-step inference, while LSP
needs no training. In contrast, UE, TUE, and RUE demand multiple
costly SGD updates. Tab. VII shows our method is 1000× faster than
gradient-based approaches.

F. Ablation Study

Fig. 3 (3) shows that side information enhances both the effec-
tiveness and transferability of perturbations, with true labels out-
performing pseudo-labels. Additionally, Fig. 3 (4) demonstrates that
without side information, the generator struggles to converge, causing
fluctuations in the surrogate model’s training loss. We attribute this
to side information serving as a prior, which narrows the generator’s
search space and accelerates convergence.

V. CONCLUSION

We propose Segue, a novel method for facial privacy protection
using unlearnable examples that meet five key criteria: effective-
ness, imperceptibility, transferability, robustness, and efficiency. By
leveraging generative models with side information, Segue creates
unlearnable examples that evade recognition by face recognition
models. Our approach demonstrates strong transferability across
datasets and models, resilience against attacks and distortions, and
up to 1000× faster generation than existing methods. We believe our



work can provide a new perspective and a practical solution for facial
privacy protection in the real world.
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