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Abstract—Large language models (LLMs), represented by
ChatGPT, have greatly simplified text generation tasks. However,
they have also raised concerns about privacy risks such as
data leakage and unauthorized information collection. Exist-
ing solutions for privacy-preserving inference face practical
challenges related to computational time and communication
costs. In this paper, we propose InferDPT, the first practical
framework for privacy-preserving Inference of black-box LLMs,
implementing Differential Privacy in Text generation. InferDPT
comprises two key modules: the “perturbation module” utilizes
the differentially private mechanism to generate a perturbed
prompt, facilitating privacy-preserving inference with black-
box LLMs; the “extraction module”, inspired by knowledge
distillation and phenomenon we observed, extracts coherent and
consistent text from the perturbed generation result, ensuring
successful text generation completion. To achieve a better balance
between utility and privacy protection, we introduce RANTEXT,
a novel differentially private mechanism integrated into the
perturbation module of InferDPT, which introduces the concept
of “RANdom adjacency list” for TEXT perturbation within the
prompt. Experimental results across three datasets demonstrate
that the text generation quality of InferDPT is comparable to
that of non-private GPT-4, and RANTEXT surpasses existing
state-of-the-art mechanisms, namely, SANTEXT+ and CUSTEXT+
in the trade-off between privacy and utility. Even with a privacy
parameter ε value of 6.0, RANTEXT achieves an average privacy
protection level of exceeding 0.90 against the embedding inversion
attacks, which is 0.58× higher than that of SANTEXT+ and
3.35× higher than that of CUSTEXT+. Our code is available at:
https://github.com/mengtong0110/InferDPT.

Index Terms—Differential privacy, black box, inference, large
language model.

I. INTRODUCTION

IN recent years, the rapid advancement of large language
models (LLMs) has garnered widespread attention from

both the academic and industrial communities worldwide [1].
ChatGPT [2], a prominent example, has reached a remarkable
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TABLE I
COMPARISONS OF DIFFERENT METHODS. A CHECK MARK (✓) INDICATES

THAT METHODS MEET THE SCENARIO REQUIREMENTS.

Method Text Generation Black Box Inference Low Cost

CipherGPT [9] ✓ ✓
TextObfuscator [10] ✓ ✓

DP-Forward [11] ✓ ✓
SANTEXT+ [12] ✓ ✓
CUSTEXT+ [13] ✓ ✓

InferDPT + RANTEXT ✓ ✓ ✓ ✓

milestone with 100 million weekly active users, as announced
by OpenAI CEO Sam Altman on November 6, 2023, during
the company’s inaugural developer conference held in San
Francisco [3]. The widespread popularity of ChatGPT has
significantly facilitated people’s daily work and lives. Users
interact with ChatGPT via APIs or web interfaces to generate
text for various applications, including but not limited to
drafting articles, documenting daily work activities, and crafting
advertisements for new products [4].

However, technology is a double-edged sword. While LLMs
offer unparalleled convenience and utility in text generation,
they may also raise potential privacy concerns. There are
instances where the misuse of LLMs has led to serious privacy
infringements. One such example involves Samsung employ-
ees leaking the company’s confidential meeting records and
sensitive data about unreleased products [5]. Furthermore, in a
recent incident, GPT-3.5 unexpectedly disclosed an individual’s
selfies [6]. These incidents reignited concerns among the public
regarding the potential privacy risks associated with uploading
personal data to LLMs [7], [8]. Therefore, it is crucial to address
privacy concerns of uploading query contents, which is called
prompt. We provide an example in Figure 1 to demonstrate
privacy leakage in the prompt when a user interacts with LLMs.

Existing Solutions. A prompt in text generation tasks consists
of a writing instruction and a document1. Previous studies [9]–
[11] failed to protect the privacy within the document during
the inference process in practical text generation tasks. As
shown in Table I, CipherGPT [9] utilized homomorphic
encryption techniques in transformer-architecture models to
enable inference on encrypted data. While these techniques
can be used theoretically for privacy-preserving text generation
tasks, they have limitations in practical applications due
to the significant computational time and communication
costs. TextObfuscator [10] and DP-Forward [11] added noise

1The writing instruction provides directions on what the model should do;
the document provides context that the model needs to generate a response.

https://github.com/mengtong0110/InferDPT
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Fig. 1. The illustration of potential privacy leakage and a solution via InferDPT when a user employs black-box LLMs for text generation tasks.

during data transmission in split learning. However, they
are mainly designed for classification tasks. Furthermore,
they are unsuitable for black-box scenarios where the model
owners, such as OpenAI [14], do not disclose details about
the architectures of LLMs considering the intellectual property
and commercial value of the models.

On the other hand, SANTEXT+ [12] and CUSTEXT+ [13]
leveraged local differential privacy (LDP) techniques [15] to
verbatim replace sensitive tokens in the text with semantically
close tokens from a fixed token set, which is termed as static
adjacency list in the LDP context. These methods are also
designed for privacy-preserving classification tasks, which can
tolerate considerable information distortion introduced by LDP
noise. For the privacy-preserving text generation tasks [16]
investigated in this paper, even a slight information distortion
in the prompt can lead to incoherence and inconsistency in
generated text, rendering SANTEXT+ and CUSTEXT+ not
directly effective for such tasks. Additionally, the size of static
adjacency list equals the entire vocabulary in SANTEXT+,
which is excessively large and increases the probability that
perturbed tokens are semantically irrelevant to raw ones.
Moreover, our experimental results in Figure 7 demonstrate that
CUSTEXT+ is vulnerable to embedding inversion attacks [17]:
even in the extreme case where privacy parameter ε is set
to 0.01, an adversary can still recover 40% of raw tokens in
CUSTEXT+. The rationale behind this phenomenon is that
each token has a small static adjacency list (which includes
the raw token itself) in CUSTEXT+, thereby increasing the
probability that the raw token will not be replaced.

Our Proposal. To protect the privacy of the entire document
during the inference process with black-box LLMs and address

TABLE II
AN ILLUSTRATION OF PERTURBED PROMPTS AND PERTURBED GENERATION

FROM GPT-4 BY RANTEXT. THE GREEN TEXT APPEARS IN BOTH
PERTURBED AND ORIGINAL GENERATIONS.

Method Perturbed Prompt Generated Text

Original Sam lives in downtown Boston and he enjoys walking through the historic streets.

ε = 2.0 Lin living at city Barcelona and she loves exploring local cafes and beaches.
ε = 6.0 Mary lived in town Broadway and she enjoys watching shows at the theater.
ε = 10.0 Ben lives at urban Boston and he enjoys exploring the historic landmarks.

the information bias caused by LDP, we introduce a framework,
InferDPT, for text generation tasks. The general concept of
InferDPT is inspired by knowledge distillation [18] and our
observation. As illustrated in Table II, our observation is as
follows: (1) The generation of the perturbed prompt by LDP
shares the same tokens across multiple parts of the generated
text from the raw prompt. (2) Furthermore, the number of shared
tokens between them positively correlates with the privacy
parameter ε. This suggests that the perturbed generation result
could potentially serve as a reference for a smaller language
model to complete the generation task, distilling LLMs’
generative capability. Based on the observation, InferDPT
comprises a perturbation module and an extraction module. In
the perturbation module, InferDPT employs a token-level
LDP mechanism, such as SANTEXT+ and CUSTEXT+, to
replace each token in the document with a new token, producing
a perturbed prompt shown in Figure 1. It uploads the perturbed
prompt to remote LLMs and obtains the perturbed generation
result. In the extraction module, InferDPT deploys a local
model that is lightweight and less capable than remote LLMs.
This model extracts tokens from the perturbed generation result
and reconstructs them into a generated text aligned with raw
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prompt. Ultimately, InferDPT not only preserves the privacy
of the prompt but also leverages the capabilities of remote
LLMs to enhance the local model’s output quality and complete
the generation task.

To achieve a better balance between utility and privacy
protection, we develop RANTEXT. It is a novel differentially
private mechanism integrated into the text perturbation of
InferDPT. RANTEXT introduces the concept of random
adjacency list for token-level perturbation. For each token, it
employs the Laplace distribution [19] to dynamically determine
the size of the random adjacency list, and then samples a new
token from this list to replace raw tokens in the document.
This approach enables RANTEXT to achieve a better trade-off
between utility and privacy protection than existing methods do:
(1) the random adjacency list in RANTEXT is typically smaller
than SANTEXT+’s static adjacency list, which enhances the
semantic utility of the perturbed text; (2) Compared with that
in CUSTEXT+, the size of the adjacency list in RANTEXT is
generally larger, making it more difficult for an adversary to
reconstruct the raw tokens.

We conduct experiments on GPT-4 [14] for the evaluation of
practical open-ended text generation tasks across three datasets.
We found that existing attack strategies for differential privacy
were not effective enough against RANTEXT. We propose an
adaptive attack, the GPT inference attack, which leverages the
capabilities of GPT-4 to reconstruct raw tokens.
Our Contributions. We summarize our main contributions:
• We propose InferDPT, the first practical framework for

privacy-preserving inference of black-box large language
models, implementing differential privacy in text generation.

• We develop RANTEXT, a novel exponential mechanism of
local differential privacy integrated into document pertur-
bation of InferDPT. It achieves a better balance between
utility and privacy protection compared to existing baselines.

• We conduct experiments on three datasets tailored to practical
open-ended text generation tasks in Section VI-F. Experi-
mental results demonstrate that with ε set to 3.0 and a
3.89GB local model, InferDPT achieves generation quality
comparable to GPT-4 in terms of three metrics.

• We evaluate four classes of privacy threats in Section VI-B.
In particular, when we set the privacy parameter ε to 6.0
and select the top 10 candidates for embedding inversion
attack, RANTEXT offers an average privacy protection level
exceeding 0.90, which is 3.35× higher that of CUSTEXT+
and 0.58× higher than that of SANTEXT+.

II. PRELIMINARIES

A. Large Language Models

Large language models (LLMs) are advanced artificial
intelligence systems trained on extensive datasets. They are
designed to understand, generate, and interpret human language,
demonstrating incredible versatility for various language-related
tasks. Generally, LLMs generate text Gen based on the prompt
Pro uploaded by the users. They come in different types,
including closed-source commercial services like ChatGPT [2]
and Claude [8], as well as open-source models like Llama [20]
and Vicuna [21]. In this paper, we focus on the closed-source

TABLE III
NOTATIONS AND DEFINITIONS. WE INDICATE WHICH ELEMENTS ARE

KNOWN TO THE ADVERSARY DURING THE INFERENCE.

Usr User of LLMs
Adv LLMs as an adversary

Ins Instruction for text writing
Doc Raw document of the user
Docp Perturbed document of the user
Pro Raw prompt of the user
Prop Perturbed prompt of the user
Gen Generation result of the raw prompt
Genp Generation result of the perturbed prompt

V Token vocabulary
Cr Random adjacency list of token
Ce Random adjacent embeddings of token
Cs Static adjacency list of token
u Scoring function of the exponential mechanism
M Random mechanism of differential privacy
Infer Inference function for text generation of LLMs

LLMs and aim to address their privacy issues during the black-
box inference in the open-ended text generation tasks.

Specifically, in the open-ended text generation task [22],
the role of these black-box LLMs is to continue generating
text Gen in accordance with the prompt Pro for higher text
generation quality based on multi-dimensional metrics. In
detail, given a prompt Pro = Ins ∥ Doc consisting of Ins
( fundamental writing instructions ) and Doc = ⟨xi⟩Li=1 ( raw
document composed of a sequence of L tokens xi, belonging to
token vocabulary V ), the LLMs commit to providing inference
function Infer(·) :Pro→ Gen to generate text.

B. (Local) Differential Privacy& Exponential Mechanism

Differential privacy [15] is a privacy protection concept. As
one of its most popular models, ε-local differential privacy
(ε-LDP) allows data owners to locally perturb their data [23]
using the randomized mechanism M(·) before uploading it to
any untrusted aggregator.

Definition 1 (ε-Local Differential Privacy [24]). In ε-LDP,
given a privacy parameter ε ≥ 0, a randomized mechanism
M is ε-LDP compliant if it satisfies the following condition
for any two inputs x, x′ ∈ X and any possible output y ∈ Y :

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eε. (1)

Typically, a smaller value of ε provides higher privacy
protection at the cost of reduced data utility. Moreover, a
critical definition here is the input set X . In previous NLP
research [12], [13], most researchers have posited that any pair
of tokens in the vocabulary share the same input set X and
output set Y . We observe that such a definition leads to a
challenge in the trade-off between utility and privacy. In this
paper, we use random adjacency list to redefine the input set
of ε-LDP in Section V-B.

Definition 2 (Exponential Mechanism [25]). For a given
scoring function u : X × Y → R, a randomized mechanism
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Step 3. Obtain perturbed generation 𝐺𝑒𝑛𝑝 and align it with raw prompt in       Extraction Module.
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…
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Step 1.3 Sample staying to replace waiting
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U
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Fig. 2. The overview of InferDPT. It consists of (1) a perturbation module that samples new tokens to replace the raw ones in Doc via LDP and (2) an
extraction module that locally aligns the perturbed generation with the raw document.

M(·) is ε-LDP compliant if it satisfies the following condition
for any input x ∈ X and any possible output y ∈ Y :

Pr[y|x] ∝ exp

(
ε · u(x, y)

2∆u

)
, (2)

where the sensitivity ∆u is defined as:

∆u = max
x,x′∈X,y∈Y

|u(x, y)− u(x′, y)|. (3)

The scoring function u is various in different scenarios.
Typically, we can adjust the upper bound of u to set ∆u to a
specific real number, where ∆u represents the sensitivity of
the scoring function u. Similarly, the smaller the value of ε,
the higher the security of privacy protection capability, but the
lower the utility of the data. When a smaller ε is chosen, the
scoring function u(x, y) no longer plays a decisive role in the
output probability of any perturbation result.

III. PROBLEM STATEMENT

A. Threat Model

We consider the scenario where the LLM platform, such as
ChatGPT, is an honest but curious adversary, referred to as
Adv. A user, denoted as Usr, intends to upload a prompt and
invoke the inference service Infer(·) :Pro→ Gen of Adv to
complete the text generation tasks, which are poorly executed
by open-source models. Here, Gen denotes the text generated
by Adv. The uploaded prompt, Pro = Ins ∥ Doc represents
the raw prompt of Usr consisting of Ins ( fundamental writing
instructions ) and Doc = ⟨xi⟩Li=1 ( raw document composed of
a sequence of L tokens xi, belonging to token vocabulary V ).

Following previous works [10], [17], the privacy infor-
mation probably pertains to each token. To protect each
piece of the token in the raw document Doc, Usr employs
differential privacy [15] to Doc, resulting in a perturbed
document Docp. Consequently, Usr uploads the perturbed
prompt Prop = Ins ∥ Docp. Furthermore, Usr can deploy
a less capable language model than LLMs. To preserve the
model’s commercial value, Adv does not reveal the internal

- Prefix Text: He 's been waiting 19 years for a visa still stuck in a backlog , 

YouU

Vicuna

Extraction Module of  InferDPT

Your task is to extend the“Prefix Text”. Use the“Perturbed Generation” as your 

primary writing material for your extension. Extract coherent and consistent text from 

the“Perturbed Generation”and integrate them into your continuation. Ensure a 

seamless alignment with the context established by the “Prefix Text”. 

Sure, here is your extended text :

- Perturbed  Generation: She hopes for a new life in the U.S. which remains out of reach. 

Faced with prolonged uncertainty and a colossal pileup of bureaucratic hurdles, she 

oscillates daily between hope and frustration. 

his dreams of a new life in the U.S. lingering just out of reach. Faced with prolonged 

uncertainty, he spends his days fluctuating between hope and frustration … 

Fig. 3. The extraction module employs a smaller language model locally to
extract text from the perturbed generation. It then reconstructs this text into
an output that aligns with the raw document. We mark the text in green to
indicate that it is identical in both the perturbed and extracted generations.

architecture or parameters of the LLMs, but only exposes its
token vocabulary V to Usr for the purpose of billing verification
during the inference process.

The goal of Adv is to reconstruct every piece of the token in
the raw document Doc from Docp. Adv is expected to launch
attacks using vulnerabilities in LDP, aiming to recover each
token in the document Doc, based on the perturbed version
Docp. Additionally, we assume that Adv is fully informed
about the details of the differential privacy algorithm.

Table III summarizes notations frequently used in this paper.

B. Existing Solutions and Limitations

Existing solutions, such as SANTEXT+ [12] and CUS-
TEXT+ [13], focus on privacy-preserving model training in
classification tasks:
• SANTEXT+ implements local differential privacy (LDP) [26]

during the training in classification tasks. It substitutes the
raw tokens with newly sampled ones from a static adjacency
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list. However, this static adjacency list in SANTEXT+ equals
the entire token vocabulary and is excessively large. Con-
sequently, there exists a high probability that the perturbed
token may be semantically irrelevant to the raw one, leading
to diminished utility of the perturbed text.

• CUSTEXT+ perturbs each token, excluding stopwords [27],
during training in classification tasks. Compared to SAN-
TEXT+, it reduces the size of static adjacency list to a small
number (default 20) for better utility of LDP. However, this
small static adjacency list increases the probability that raw
tokens will not be replaced, resulting in privacy leakage.

To protect the privacy of documents during inference in text
generation tasks and address the information distortion intro-
duced by LDP noise, we introduce a framework, InferDPT,
(Section IV). We also propose an exponential mechanism,
RANTEXT (see Section V), which offers a better trade-off
between utility and privacy protection compared to existing
SANTEXT+ and CUSTEXT+.

IV. THE INFERDPT FRAMEWORK

A. Overview

We introduce InferDPT, a framework designed for privacy-
preserving LLMs inference in text generation tasks. As shown
in Figure 2, InferDPT is consisting of two modules:

• Perturbation Module: protecting privacy. It generates a
perturbed document by replacing each token in Doc with
one close to embedding distance and sampled by LDP.

• Extraction Module: maintaining utility. It extracts coherent
and consistent text from perturbed generation and recon-
structs them into an output aligned with the raw prompt by
a local language model, less capable than black-box LLMs.

The design of InferDPT faces two main challenges in
black-box inference. (1) Providing strong privacy protec-
tion for the raw document Doc. To solve this privacy
challenge, the perturbation module of InferDPT utilizes a
differentially private mechanism to sequentially replace each
token in the raw document Doc with alternatives close in
embedding distance. (2) Maintaining the utility of the text
under semantic perturbation. This is more tough than the
first one. To solve this challenge, we conducted abundant
experiments about the generation of the perturbed document
using LDP on LLMs. Specifically, we perturb each token
in the document with a newly sampled one close in the
embedding distance by LDP, resulting in a perturbed document.
We discovered that the generation of this perturbed document
includes numerous tokens found in the generation of the raw
document. For example, we collect the tokens appearing in the
generation of the raw document Doc in Figure 2, termed a set
{hopes, new, dreams, · · · }. We find that the generation of
the perturbed document Docp (depicted in Figure 2) contains
tokens within the set {hopes, new, dreams, · · · }. Moreover,
this overlap increases gradually as the perturbation decreases.

To formally describe this phenomenon, we propose the
following Observation about the perturbed output by LDP.

B. Key Observations

Observation. Let V be a token vocabulary. We define d(·) as
a function that quantifies the semantic similarity between two
tokens, where smaller output values indicate greater similarity.
Let M(·) denote a randomized function of LDP that satisfies:

d(x, y) ≥ d(x, z)⇒ Pr[M(x) = y] ≤ Pr[M(x) = z], (4)

where tokens x, y, z ∈ V .
Let tokens xi, yi ∈ V . Docp = ⟨yi⟩Li=1 denotes the perturbed

document of the raw document Doc = ⟨xi⟩Li=1 by yi = M(xi).
The expression Infer(Ins ∥ Doc) = ⟨h(j)

i ⟩Ki=1 represents the
generation result of the j-th inference on Doc, consisting
of tokens h

(j)
i ∈ V . Given Docp, the perturbed generation

Genp = ⟨gi⟩Ki=1 = Infer(Ins ∥ Docp) consists of tokens
gi ∈ V and satisfies the following condtion:

Expected set =
N⋃
j=1

{h(j)
i |h

(j)
i ∈ Infer(Ins ∥ Doc)}, (5)

Intersection = {gi|gi∈Expected set and gi /∈ stopwords2}, (6)

Corr(Count(Intersection), ε) > 0, (7)

where N is a positive integer; the function Count(·) counts
the size of a set; the function Corr(·) measures correlation
coefficient between two variables, with values ranging from -1
(negative correlation) to 1 (positive correlation).

Implication. This Observation states that if the Expected set
is constructed from tokens in the results of N iterations of
raw prompt, then the presence of tokens from the perturbed
generation within the Expected set will positively correlate
with ε. This implies that smaller perturbations to Doc lead to
higher consistency between the perturbed generation and the
raw generation. To verify this Observation, we carried out the
following experiments with GPT-4 [14].

Empirical Validation. We got the Expected set by collecting
100 tokens from the output of the raw prompt with GPT-4
generated 100 times on the CNN/Daily Mail dataset [28].
The raw prompt consists of a fundamental writing instruction
and a raw document of 50 tokens shown in Figure 2. We
utilized SANTEXT+ [12], CUSTEXT+ [13], and RANTEXT
introduced in Section V to generate perturbed outputs of 100
tokens from GPT-4 under various values of ε. We counted the
number of tokens from the perturbed and non-private generation
of GPT-4 that belong to the Expected set.

Figure 4 shows the experimental results. We can see that
with the increase of ε and reduction of perturbation, the
number of tokens in the Expected set of the three mechanisms
has increased. This validates observation, confirming that the
number of tokens from the Expected set appearing in the
perturbed generation positively correlates with ε.

In conclusion, our observation suggests that the perturbed
generation result shares the same tokens in multiple parts of
the non-perturbed generation result. However, the perturbed
generation result lacks some information in the raw document,

2Stopwords [27] are common words usually ignored in text analysis due to
their limited informational values.
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Algorithm 1 Perturbation Module
Input: Document Doc = ⟨xi⟩Li=1, random mechanism M(·), static

adjacency list Cs(·), random adjacency list Cr(·);
Output: Perturbed document Docp;

1: Initialize Docp ← ∅;
2: for i = 1 to L do
3: Compute Cs(xi) or Cr(xi);
4: Sample yi ∼M(xi, Cs(xi)) or yi ∼M(xi, Cr(xi));
5: Append yi to Docp;
6: end for
7: Output Docp;

which LDP replaces. To address this, InferDPT employs an
extraction module to extract related text from the perturbed
generation result as an output reference, distilling the gener-
ation capabilities of LLMs. It then reconstructs them into a
generated text aligned with the raw document. In the following
subsections, we will delve into the perturbation module and
the extraction module of InferDPT.

C. Perturbation Module

After perturbation, Usr uploads a perturbed prompt Prop =
Ins ∥ Docp (consisting of a writing instruction Ins and
a perturbed document Docp) to remote LLMs. The LLMs
then return perturbed generation Genp = Infer(Prop) to Usr.
The perturbation module of InferDPT generates a perturbed
document Docp from an input document Doc. Specifically,
it replaces each token in Doc with new tokens sampled by
the randomized mechanism M(·) of LDP from a token set. In
previous works [12], [13], this token set is static (termed the
static adjacency list Cs), whereas in our proposed RANTEXT, it
is random (termed the random adjacency list Cr). Typically, Cs

(or Cr) consists of tokens that are close to the embedding of the
token xi ∈ V to be replaced. Given a document Doc = ⟨xi⟩Li=1

composed of L tokens xi ∈ V , the perturbation module
replaces each xi with a random output yi = M(xi, Cs(xi))
or yi = M(xi, Cr(xi)), resulting in a perturbed document
Docp = ⟨yi⟩Li=1 (as shown in Figure 2). The detailed process
of the perturbation module is outlined in Algorithm 1. In the
implementations, InferDPT adopts three mechanisms of LDP:
SANTEXT+ [12], CUSTEXT+ [13], and RANTEXT (detailed
in the following Section V).

While LDP perturbs sensitive text, it is important to note
that an excessively large ε in LDP increases the risk of privacy
leakage from the perturbed text. This is because LDP perturbs
raw tokens to more semantically close tokens as ε increases.
We experimentally demonstrate this risk by calculating the
synonymous token proportion and the embedding distance (be-
tween the raw tokens and their perturbed tokens) with various

TABLE IV
PROPORTION OF SYNONYMS BETWEEN THE RAW TOKENS AND THEIR

PERTURBED VERSIONS [27].

Method Synonym Proportion↓
ε = 2.0 ε = 6.0 ε = 10.0 ε = 14.0

SANTEXT+ 0.371 0.373 0.374 0.375
CUSTEXT+ 0.441 0.697 0.907 0.985
RANTEXT 0.013 0.049 0.147 0.378

TABLE V
EUCLIDEAN DISTANCE BETWEEN THE EMBEDDINGS OF TOKENS AND THEIR

PERTURBED VERSIONS.

Method Euclidean Distance↑
ε = 2.0 ε = 6.0 ε = 10.0 ε = 14.0

SANTEXT+ 3.081 2.775 2.756 2.750
CUSTEXT+ 2.862 1.732 0.553 0.118
RANTEXT 4.317 4.133 3.667 2.807

ε values. As shown in Table IV and Table V, as ε increases,
the synonym proportion grows and the Euclidean distance
decreases, indicating greater semantic similarity between the
raw tokens and the perturbed tokens.

D. Extraction Module

As previously mentioned, the perturbation module disturbs
each token and key information in the raw document Doc,
making it difficult for an adversary to reconstruct the raw
tokens from Docp or Genp. However, this perturbation also
leads to inconsistency and partial incoherence of semantics
between Genp and Doc, as illustrated in Figure 2.

To obtain the aligned generation of the raw document
Doc, the extraction module of InferDPT deploys a local
language model that is considered trustworthy and does not
pose any privacy leakage issues. This local model is smaller
and less powerful than remote black-box LLMs, facilitating
easier implementation under limited resources. As shown in
Figure 3, Usr inputs the raw document Doc and the perturbed
generation Genp into this local model. This model is tasked
with extracting coherent and consistent text from Genp and
integrating it into the continuation of Doc, ensuring an aligned
output. Although the local model can generate aligned content
independently, the generation quality is not satisfactory due to
its limited capabilities. However, with the perturbed generation
Genp, the local model distills the capacity of the remote black-
box LLMs. The details of the prompt utilized in the extraction
module can be found in Appendix A.

Based on the above description, we have a panoramic
view of InferDPT. It is noted that the perturbation module
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Sergio Garcia , a 36-year-old undocumented immigrant in California , has held 
two lifelong dreams : to become a U.S. citizen and to practice law . He 's been 
waiting 19 years for a visa still stuck in a backlog , but the Supreme Court
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On the left: the process of computing a random adjacency list for the token "years". On the right: a toy example of perturbing a raw document to obtain a perturbed version.

Fig. 5. The workflow of RANTEXT. It comprises two steps: (1) computing random adjacency lists and (2) sampling perturbed tokens via ε-LDP.

can adopt existing differentially private mechanisms such as
SANTEXT+ [12] and CUSTEXT+ [13]. However, these two
have drawbacks either in terms of utility or security, as analyzed
in Section III-B. To address these problems, we introduce
RANTEXT in the following section.

V. THE RANTEXT MECHANISM

A. Overview

We design RANTEXT to address the utility and vulnerability
problems of previous differentially private mechanisms [12],
[13]. As shown in Figure 5, RANTEXT comprises two steps:
• Compute Random Adjacency Lists. This step computes a

random adjacency list for each raw token via two operations:
computing random embedding and Euclidean distance. Any
tokens in random adjacency list share the same input set.

• Sample Perturbed Tokens via ε-LDP. This step samples
a perturbed token for each raw token and replaces the raw
token in the document from its random adjacency list via
ε-LDP, obtaining the perturbed document.
As mentioned in Section III-A, LLMs expose their token

vocabulary V for billing verification of inference service.
Utilizing the token vocabulary V and Byte Pair Encode (BPE)
algorithm [29], users can obtain the tokenizer(·) of LLMs.

Given a raw document Doc, RANTEXT first uses the
tokenizer(·) algorithm of LLMs to turn the text of Doc into
tokens ⟨xi⟩Li=1, where xi ∈ V :

Tokenset = ⟨xi⟩Li=1 = tokenizer(Doc). (8)

To preserve the privacy of Doc, RANTEXT discards the
tokens of Doc that do not belong to V and employs an
exponential mechanism to subsequently replace each remaining
token with one close in embedding distance from its exclusive
random adjacency list:

ri = M(xi, Cr(xi)), (9)

Tokensetp = ⟨ri⟩li=1 = ⟨M(xi, Cr(xi))⟩li=1, (10)

where token ri ∈ V , Tokensetp represents the perturbed
token set, and Cr(xi) represents the random adjacency list
of xi. RANTEXT concatenates the tokens in a perturbed token
set Tokensetp to obtain a perturbed document Docp, thereby
providing privacy protection.

B. Compute Random Adjacency Lists

To formally define the random adjacency list, we first give
a definition of random adjacent embeddings:

Definition 3 (Random Adjacent Embeddings). Given token
t ∈ V , its random adjacent embeddings are defined as follows:

Ce(t) = {eb|de (eb, ϕ(t)) < de(ϕ̂(t), ϕ(t)), eb ∈ RN}, (11)

where eb ∈ RN represents any N -dimensional vector within the
real number domain. The function de(·) is utilized to compute
the distance between two vectors and is defined as de(a, b) =√∑n

i=1(ai − bi)2. The function ϕ : V → RN maps any given
token to a vector in the N -dimensional real number vector
space. The function ϕ̂(t) = ϕ(t)+Y , where the random vector
Y satisfies the probability density:

Y ∼ f(x) =
Z

2∆ϕ
· exp

(
−Z · |x|

∆ϕ

)
, (12)

Z =

{
ε if ε < 2,

a log(b · ε+ c) + d otherwise,
(13)

where ∆ϕ is the sensitivity of function ϕ(·), a ≈
0.0165, b ≈ 19.0648, c ≈ −38.1294, d ≈ 9.3111 .

Given a token t ∈ V to compute its random adjacent
embeddings, we need to complete the two-step computation:
Step 1. Compute the random embedding. We construct the
random vector Y utilizing the Laplace distribution [19]. We
add Y independently to each dimension of ϕ(t), obtaining the
random embedding ϕ̂(t) = ϕ(t) + Y of raw private token t.
Step 2. Compute the Euclidean distance. We compute the
Euclidean distance between ϕ(t) and ϕ̂(t), referred to
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Algorithm 2 RANTEXT Mechanism
Input: Token set Tokenset = ⟨xi⟩Li=1, token vocabulary V ,

privacy parameter ε, embedding function ϕ(·), distance
function de(·), random vector Y ;

Output: Perturbed document Docp;
1: Initialize Tokensetp ← ∅;
2: for i = 1 to L do
3: if xi /∈ V then
4: Discard the token xi ;
5: Continue;
6: end if
7: Sample a random vector Y ;
8: Compute embedding ebt ← ϕ(xi);
9: Compute random embedding ebn ← ebt + Y ;

10: Compute Euclidean distance dthreshold ← de(ebn, ebt);
11: Ce(xi) = {eb | de (eb, ebt) < dthreshold , eb ∈ RN};
12: Cr(xi) = {xi

′|ϕ(xi
′) ∈ Ce(xi), xi

′ ∈ V };
13: for each xi

′ ∈ Cr(xi) do
14: dxi

′ ← de(ϕ(xi), ϕ(xi
′));

15: Scoring function u(xi, xi
′)← 1− dxi

′/dthreshold;
16: ptotal ← ptotal + exp (ε/2 · u(xi, xi

′));
17: end for
18: for each xi

′′ ∈ Cr(xi) do
19: p(xi

′′|xi)← exp (ε/2 · u(xi, xi
′′)) /ptotal;

20: end for
21: Sample from random adjacency list ri ∼ p(xi

′′|xi);
22: Append new token ri to perturbed token set Tokensetp;
23: end for
24: Concatenate Tokensetp = ⟨ri⟩Li=1 obtaining Docp
25: Output perturbed document Docp;

de(ϕ̂(t), ϕ(t)). The random adjacent embeddings consist of
those embeddings whose Euclidean distance to ϕ(t) is shorter
than de(ϕ̂(t), ϕ(t)).

We use Y to dynamically determine the size of the random
adjacency list. The detailed construction process of the random
vector Y can be found in Appendix B.

With the definition of random adjacent embeddings, we give
the definition of the random adjacency list:

Definition 4 (Random Adjacency List). Given a token t ∈ V ,
its random adjacency list is defined as follows:

Cr(t) = {t′|ϕ(t′) ∈ Ce(t), t
′ ∈ V } . (14)

Given a token t ∈ V , its random adjacency list is composed
of any token t′ in the token vocabulary V , whose embedding
ϕ(t′) has a Euclidean distance to ϕ(t) shorter than the
Euclidean distance between t’s random embedding and t’s
embedding ϕ(t).

The design of the random adjacency list in RANTEXT obeys
the following theorem:

Theorem 1. Given a token t ∈ V and any token t′ ∈ V , there
exists a random adjacency list Cr(t) of RANTEXT satisfying
t′∈ Cr(t).

Theorem 1 is proven in Appendix C. It demonstrates that
a token t can be substituted with any token t′ ∈ V in

RANTEXT, thereby increasing the difficulty for adversaries to
reconstruct the raw tokens. Moreover, the random adjacency
list addresses the utility problem of the perturbed text in
SANTEXT+. Although the theoretically maximum size of
the random adjacency list is equivalent to the size of V , it
is typically smaller than that in terms of probability. This
reduces the likelihood that the perturbed token is semantically
irrelevant.

Furthermore, experimental results in the following Sec-
tion VI-F demonstrate that the random adjacency list in
RANTEXT is generally larger than the static adjacency
list in CUSTEXT+, which solves the vulnerability of CUS-
TEXT+ [13] to the embedding inversion attack.

C. Sampling Perturbed Tokens via ε-LDP
In SANTEXT+ [12], a proportion of tokens is not per-

turbed by LDP. To solve the privacy leakage issue in the
raw text, RANTEXT perturbs every piece of the token in
Tokenset = ⟨xi⟩Li=1. To perturb token xi, RANTEXT employs
the exponential mechanism [25], which satisfies ε-LDP, to
select a new token from Cr(xi) to replace the original one. For
any special token ts /∈ V , RANTEXT discards it, to ensure
there is no special token leakage in Docp.

To guarantee the utility of the perturbed document, the
random mechanism M(·) of the exponential mechanism in
RANTEXT is required to satisfy:

d(x, y) ≥ d(x, z)⇒ Pr[M(x) = y] ≤ Pr[M(x) = z], (15)

where x ∈ V , and y and z belong to the random adjacency
list of x. d(·) measures the semantic similarity between two
inputs, with a smaller output indicating greater similarity.

To fulfill that, the scoring function u(·) of the random
mechanism M(·) in RANTEXT is described as follows:

Given a token t, RANTEXT considers that any two tokens
in Cr(t) share the same input set and output set during the
perturbation of token t. Given any two tokens x, y ∈ Cr(t),
the scoring function is

u(x, y) = 1− |de(ϕ(x), ϕ(t))− de(ϕ(y), ϕ(t))|
de(ϕ(t), ϕ̂(t))

. (16)

With Equation 11 and Equation 14, it holds that:

0 ≤ |de(ϕ(x), ϕ(t))− de(ϕ(y), ϕ(t))|
de(ϕ(t), ϕ̂(t))

< 1 . (17)

With Equation 16 and Equation 17, it can be deduced that:

0 < u(x, y) ≤ 1 and ∆u = 1. (18)

Given a privacy parameter ε ≥ 0, the probability of obtaining
an output of the perturbed token y ∈ Cr(t) for any input token
x ∈ Cr(t) is as follows:

Pr[y|x] =
exp

(
ε·u(x,y)
2∆u

)
∑

y′∈Cr(t)
exp

(
ε·u(x,y′)

2∆u

) (19)

=
exp

(
ε
2 ·

(
1− |de(ϕ(x),ϕ(t))−de(ϕ(y),ϕ(t))|

de(ϕ(t),ϕ̂(t))

))
∑

y′∈Cr(t)
exp

(
ε
2 ·

(
1− |de(ϕ(x),ϕ(t))−de(ϕ(y′),ϕ(t))|

de(ϕ(t),ϕ̂(t))

)) .
(20)
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Fig. 6. Results of BERT inference attack and GPT inference attack on CNN/Daily Mail, Wikitext-103-v1, and ArXiv Dataset.
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Fig. 7. Results of embedding inversion attack on CNN/Daily Mail, Wikitext-103-v1 and ArXiv Dataset.

Specifically for the input token t ∈ Cr(t) and output token
y ∈ Cr(t), it can be deduced that:

u(t, y) = 1− de(ϕ(y), ϕ(t))

de(ϕ(t), ϕ̂(t))
, (21)

Pr[y|t] =
exp

(
ε
2 ·

(
1− de(ϕ(t),ϕ(y))

de(ϕ(t),ϕ̂(t))

))
∑

y′∈Cr(t)
exp

(
ε
2 ·

(
1− de(ϕ(t),ϕ(y′))

de(ϕ(t),ϕ̂(t))

)) . (22)

The detailed process of RANTEXT is shown in Algorithm 2.
Furthermore, the token sampling for each raw token in
RANTEXT satisfies the definition of ε-LDP:

Theorem 2. Given a privacy parameter ε ≥ 0 and a random
adjacency list Cr(t) of token t, for any input tokens x, x′ ∈
Cr(t) and output token y ∈ Cr(t), the randomized mechanism
M of RANTEXT holds that:

Pr[M(x) = y]

Pr[M(x′) = y]
≤ eε. (23)

Theorem 2 demonstrates that given a Cr(t) of token t, the
token sampling for each raw token in RANTEXT satisfies
ε-LDP. Theorem 2 is proven in Appendix C.

VI. EXPERIMENTS

In this section, we evaluate the privacy protection levels and
utility of the InferDPT with various LDP mechanisms.

A. Experiment Setup

Datasets. For traditional open-ended text generation tasks,
we use two classic NLP datasets: CNN/Daily Mail [28] and
Wikitext-103-v1 [30]. For practical applications, we use the
ArXiv Dataset [31], FinRED [23], and MedQA [32]. These
datasets encompass a wide range of events and entities.
Baselines. InferDPT is the first practical framework for
privacy-preserving inference that implements differential pri-
vacy in text generation tasks [33]. As there are no other
frameworks of the same type, we did not compare InferDPT
with any others. For the differentially private mechanisms
of the perturbation module, we compared RANTEXT with
existing state-of-the-art mechanisms, SANTEXT+ [12] and
CUSTEXT+ [13] in the default settings of them.
Implementation. We conduct experiments on a cluster
equipped with NVIDIA RTX A6000 GPUs and Intel Xeon
Gold 6130 2.10 GHz CPUs. We use GPT-4 [14] as the remote
large language model. Its token vocabulary is cl100k base [34],
from which we select the first 11,000 English tokens as V . The
embedding function ϕ(·) is text-embedding-ada-002 [35]. For
the local extraction module, we employ Vicuna-7b-4bit [36],
Llama2-7b-4bit [20], and Llama3.1-8b-4bit [20].

B. BERT Inference Attack
In the BERT inference attack [12], an adversary employs a

pre-trained BERT model to recover raw document Doc from
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Fig. 8. Cosine similarity ↓ between the perturbed generation and the raw document.

TABLE VI
PRIVACY LEAKAGE VIA THE PERTURBED GENERATION.

ε Method Privacy Leakage Rate ↓
1-gram 2-gram 3-gram

∞ Non-private 0.110 0.058 0.027

2.0
SANTEXT+ 0.090 0.030 0.016
CUSTEXT+ 0.098 0.030 0.007
RANTEXT 0.078 0.024 0.004

6.0
SANTEXT+ 0.103 0.053 0.022
CUSTEXT+ 0.099 0.034 0.008
RANTEXT 0.081 0.027 0.005

10.0
SANTEXT+ 0.104 0.055 0.022
CUSTEXT+ 0.103 0.04 0.013
RANTEXT 0.095 0.029 0.006

14.0
SANTEXT+ 0.105 0.057 0.023
CUSTEXT+ 0.105 0.052 0.017
RANTEXT 0.101 0.032 0.008

their perturbed version Docp. The BERT model, developed
through masked language modeling [37], predicts the raw
tokens by sequentially replacing each token in the perturbed
text with a special token "[MASK]". This approach leverages
BERT’s capability to understand context, allowing it to infer
the masked tokens. An attack is successful if the output token
matches the input token. Subsequently, we calculate attack
success rate3 across all attacks, denoted as rats. The privacy
protection level of the differentially private mechanism is
defined as 1− rats.

As shown in Figure 6, RANTEXT offers better privacy
protection against BERT inference attack compared to SAN-
TEXT+ and CUSTEXT+. The experimental results indicate
that RANTEXT provides over 80% privacy protection within
an ε value range of 0.01 to 18.0. In particular, with an ε value
of 18.0 on the CNN/Daily Mail dataset, the privacy protection
level of RANTEXT is 1.11 × that of SANTEXT+ and 1.41 ×
that of CUSTEXT+. We analyzed the results of the experiment
and found that BERT did not recognize the tokens of GPT-
4. To more comprehensively evaluate RANTEXT’s security,
we proposed an adaptive attack leveraging the capabilities of
GPT-4 in Section VI-D, GPT inference attack.

3We exclude "[UNK]" token, as it does not yield meaningful information.

C. Embedding Inversion Attack

Embedding inversion attack [17] computes the distance
between the embedding of each token in the perturbed
document and the embeddings of other tokens in the vocabulary,
returning top K tokens with the closest Euclidean distance.
The privacy protection level is defined as 1− rats.

Experiments were conducted under the conditions of top
K = 1 and 10. Figure 7 illustrates that, under both conditions,
SANTEXT+ and CUSTEXT+ are susceptible to embedding
inversion attacks, indicating a relatively lower level of privacy
protection. Even at ε = 0.01, these methods could only provide
privacy protection for over 40% of the original documents. As
the top K changes from 1 to 10, the privacy protection level
of SANTEXT+ and CUSTEXT+ remains largely unchanged.
On the other hand, RANTEXT benefits from its design of
the random adjacency list (generally larger than that in
CUSTEXT+) and the perturbation on each token, preventing
attackers from successfully reconstructing raw tokens.

D. Adaptive Attack: GPT Inference Attack

RANTEXT applies perturbations to the GPT-4 token vocab-
ulary. Since GPT-4 recognizes all tokens, it is hypothesized
that GPT-4 can better reconstruct raw tokens perturbed by
RANTEXT. Therefore, we propose an adaptive attack, the GPT
inference attack. In this method, the attacker inputs perturbed
text into GPT-4 and instructs it to recover each token. The
attack is successful if the recovered token coincides with the
raw one. The privacy protection level is defined as 1 − rats.
The prompt of this attack can be found in Appendix D.

Figure 6 displays the results of the GPT inference attack.
GPT-4 has a higher attack success rate than BERT in all
tests. This may be due to GPT-4’s larger size and better
understanding abilities, making it more effective in inference
attacks. Confronted with the GPT inference attack, SANTEXT+
and CUSTEXT+ showed lower privacy protection levels than
RANTEXT, which maintained the best privacy protection.

E. Privacy Leakage in Perturbed Generation

We further discussed the possibility of the raw document Doc
being leaked by the perturbed generation result Genp. Figure 8
shows the cosine similarity between Doc and Genp. The
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TABLE VII
PERFORMANCE COMPARISON ON OPEN-ENDED TEXT GENERATION TASKS ACROSS DIFFERENT METHODS, DATASETS, AND PRIVACY PARAMETERS

(ε = 1, 2, 3), EVALUATED BASED ON DIVERSITY, MAUVE, AND COHERENCE.

Dataset Method diversity↑ MAUVE↑ coherence↑
ε = 1.0 ε = 2.0 ε = 3.0 ε = 1.0 ε = 2.0 ε = 3.0 ε = 1.0 ε = 2.0 ε = 3.0

CNN/Daily Mail

GPT-4 0.983 0.671 0.632
Vicuna-7b-4bit (3.89GB) 0.943 0.197 0.627

InferDPT + SANTEXT+ 0.966 0.967 0.966 0.351 0.374 0.407 0.590 0.632 0.642
InferDPT + CUSTEXT+ 0.966 0.967 0.965 0.540 0.571 0.581 0.726 0.733 0.752
InferDPT + RANTEXT 0.970 0.970 0.971 0.542 0.563 0.587 0.723 0.735 0.736

Wikitext-103-v1

GPT-4 0.987 0.453 0.672
Vicuna-7b-4bit (3.89GB) 0.916 0.158 0.663

InferDPT + SANTEXT+ 0.958 0.958 0.959 0.213 0.220 0.255 0.650 0.658 0.678
InferDPT + CUSTEXT+ 0.960 0.961 0.959 0.301 0.315 0.321 0.727 0.736 0.741
InferDPT + RANTEXT 0.961 0.962 0.961 0.245 0.254 0.274 0.729 0.744 0.745

ArXiv Dataset

GPT-4 0.935 0.736 0.726
Vicuna-7b-4bit (3.89GB) 0.873 0.366 0.703

InferDPT + SANTEXT+ 0.945 0.946 0.946 0.196 0.207 0.230 0.651 0.670 0.690
InferDPT + CUSTEXT+ 0.946 0.945 0.944 0.410 0.443 0.455 0.748 0.767 0.784
InferDPT + RANTEXT 0.947 0.948 0.947 0.359 0.375 0.395 0.752 0.761 0.762

TABLE VIII
PERFORMANCE COMPARISON OF THE TIME COST PER INFERENCE ON 100

TOKENS IN INFERDPT.

Method Time Cost (seconds)
SANTEXT+ CUSTEXT+ RANTEXT

Perturbation Module 0.0015± 0.0001 0.0005± 0.0001 0.0543± 0.0023
Black-box Inference - 2.8324± 0.2111 -
Extraction Module - 3.5673± 0.2781 -

orange straight line indicates the cosine similarity between Doc
and the generation of GPT-4 without any privacy protection.
Experimental results reveal that RANTEXT maintains low
semantic similarity between the raw document Doc and the
perturbed generation result Genp, indicating the low risk of
privacy leakage through perturbed results.

Moreover, we measured privacy leakage in perturbed outputs
by checking if n-gram tokens from the original document were
repeated. A n-gram token found in both raw text and perturbed
output counts as a leak. As Table VI shows, even with non-
private prompts, under 11% privacy of raw document is leaked.

F. Evaluation of Utility

We evaluated the quality of outputs generated by InferDPT
with various differentially private mechanisms in the pertur-
bation module, using the Vicuna-7b-4bit (3.89GB) in the
extraction module on various datasets. Following previous
works of open-ended text generation [22], [33], we use the
first 50 tokens of the articles referred to raw document Doc,
which we must protect. We use the continuation writing of
Doc referred to as Gen, which consists of 100 tokens. Tokens
are counted by the tokenizer function of GPT-2 [38]. Aligning
with [39], three metrics were employed to evaluate the quality
of the generated text in the open-ended generation task:
1) Diversity. This metric suggests the text’s diversity by
computing the unique n-gram repetition rates as follows:

diversity =

4∑
n=2

|unique n−grams(Gen)|
|total n−grams(Gen)|

.

A lower score indicates that the model is prone to repetition,
while a higher score shows broader vocabulary usage.
2) MAUVE [40]. It is employed to assess the similarity between
text generated by a language model and human-authored target
continuation text. A higher score is desirable in this metric.
3) Coherence. Coherence computes the cosine similarity
between embeddings of document Doc and continuation Gen:

COH(Doc,Gen)=
SimCSE(Doc)·SimCSE(Gen)

∥SimCSE(Doc)∥·∥SimCSE(Gen)∥
,

where SimCSE(x) represents the pretrained model [41].
Table VII shows InferDPT’s generation quality compared

to non-private GPT-4:
(1) Although the uploaded prompt is perturbed by differential

privacy, the quality of text generated by InferDPT is
comparable to that directly produced by non-private GPT-4 and
better than the local model’s output. It proves that InferDPT
works effectively. (2) In terms of diversity, the quality of text
generated by RANTEXT is superior to that of CUSTEXT+ and
SANTEXT+. This phenomenon can be attributed to the design
of the random adjacency list Cr in RANTEXT, which perturbs
tokens to the more probable new ones without retaining them.
However, in some specific topics, the variety of tokens is
not particularly rich. Additionally, RANTEXT discards proper
nouns (those not belonging to V ) for privacy protection. As a
result, RANTEXT’s performance is slightly inferior to that of
CUSTEXT+ with respect to MAUVE. (3) From the perspective
of coherence, experimental results indicate that RANTEXT and
CUSTEXT+ outperform SANTEXT+. This is likely because
SANTEXT+ uses the entire vocabulary as its static adjacency
list, which is too large for the utility of the perturbed text.

For practical deployment, we measured the time cost
per inference in InferDPT. As illustrated in Table VIII,
experimental results indicate that InferDPT does not require
a significant amount of time. Most of the additional time is
spent in the extraction module, which is less than 4 seconds.

We also investigated whether InferDPT works in different
local models. Table IX demonstrate that InferDPT works
well with different models and various privacy parameter ε.
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TABLE IX
COMPARISON OF THE FINAL GENERATED TEXT QUALITY UNDER DIFFERENT LOCAL MODELS WITHIN THE EXTRACTION MODULE.

Dataset Method diversity↑ MAUVE↑ coherence↑
ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0

CNN/Daily Mail

GPT-4 0.983 0.671 0.632
Llama2-7b-4bit (3.79GB) 0.896 0.258 0.485
Vicuna-7b-4bit (3.89GB) 0.943 0.197 0.627

SANTEXT+(Llama2-7b-4bit) 0.964 0.963 0.962 0.282 0.374 0.406 0.226 0.327 0.342
CUSTEXT+(Llama2-7b-4bit) 0.963 0.962 0.963 0.493 0.519 0.548 0.460 0.483 0.514
RANTEXT (Llama2-7b-4bit) 0.968 0.969 0.967 0.473 0.526 0.566 0.411 0.453 0.525

SANTEXT+(Vicuna-7b-4bit) 0.967 0.969 0.968 0.374 0.413 0.448 0.632 0.679 0.727
CUSTEXT+(Vicuna-7b-4bit) 0.966 0.967 0.968 0.571 0.632 0.670 0.733 0.749 0.789
RANTEXT (Vicuna-7b-4bit) 0.970 0.969 0.970 0.563 0.586 0.635 0.735 0.753 0.773

TABLE X
COSINE SIMILARITY↑ BETWEEN THE FINAL GENERATION OF INFERDPT

AND THE NON-PRIVATE GENERATION FROM GPT-4.

Dataset Method ε

1.0 2.0 3.0

CNN/Daily Mail
SANTEXT+ 0.489 0.499 0.519
CUSTEXT+ 0.571 0.579 0.585
RANTEXT 0.574 0.579 0.584

Wikitext-103-v1
SANTEXT+ 0.544 0.546 0.572
CUSTEXT+ 0.597 0.613 0.627
RANTEXT 0.598 0.609 0.617

ArXiv Dataset
SANTEXT+ 0.584 0.591 0.595
CUSTEXT+ 0.682 0.693 0.694
RANTEXT 0.655 0.658 0.663

We further compared the cosine similarity between the final
generation of InferDPT and the output generated by GPT-4
without any privacy protection. The result of the comparison
is depicted in Table X. Under the same privacy parameter ε
across three datasets, the perturbed generation of RANTEXT
generally exhibits cosine similarity values close to that of the
best-performing CUSTEXT+. This is likely because RANTEXT
discards proper nouns (those not belonging to V ) in Doc,
whereas CUSTEXT+ retains all of this key information without
perturbation. This phenomenon is particularly evident in the
Wikitext-103-v1 and ArXiv datasets, which contain more proper
nouns. We emphasize that this is also one of the reasons why
CUSTEXT+ is vulnerable to the embedding inversion attack.

Furthermore, we investigated the impact of the privacy
parameter ε on the probability distribution of the size of the
random adjacency list Cr in RANTEXT. We use Cr/V to
represent the proportion of Cr in the entire vocabulary V . As
shown in Figure 9, the random adjacency list of RANTEXT
is generally larger than the static adjacency list in CUSTEXT+
and smaller than that in SANTEXT+, which provides a better
balance between utility and privacy protection of perturbation.

G. Trade-off between Privacy and Utility

In this subsection, we compare RANTEXT with CUSTEXT+
and SANTEXT+ in terms of privacy-utility trade-offs. we
conduct experiments on the CNN/Daily Mail dataset using
Vicuna-7b-4bit(3.89GB) as the extraction module. As shown
in Figure 10, each point represents the privacy protection level
(under top-1 embedding inversion attack) and generation quality
of a specific perturbation mechanism and a ε value. The yellow
straight line indicates the generation quality of directly using
GPT-4 without any privacy protection, referred to as ‘non-
private’. The experimental results demonstrate that RANTEXT
tends to offer the best generation quality under the same privacy
protection level compared to baseline methods. Due to the
effectiveness of extraction, the coherence of InferDPT is
higher than that of non-private GPT-4 in most cases.

Furthermore, our proposed method works effectively in
commercial [23] and medical [32] domains. More detailed
experiments can be found in Appendix E and Appendix F.

In summary, RANTEXT demonstrates superior privacy
protection against various attacks on differentially private
mechanisms compared to baselines, confirming its robust
privacy safeguarding alongside high-quality text generation.

VII. DISCUSSION AND LIMITATIONS

A. Performance Gap in MAUVE

Although experimental results demonstrate the effectiveness
of InferDPT in privacy-preserving text generation, a notable
gap in MAUVE scores persists when compared to GPT-4, as
shown in Table IX. One probable reason for this discrepancy is
the semantic perturbations introduced by LDP, which disturb the
original information in the raw prompt. Future work focusing
on developing a differentially private mechanism with a better
trade-off between utility and privacy protection could improve
the MAUVE score.
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Fig. 10. Results of the trade-off between utility and privacy protection with various privacy parameters ε ranging from 0.01 to 18.0.

Furthermore, it is important to note that the local model
within the extraction module of InferDPT is pre-trained
and not specifically fine-tuned for this task. Future work that
enhances the extraction and reconstruction capabilities of this
local model could also result in improved MAUVE scores.

B. Comparing to Prompt Engineering Methods

The prompt engineering method, represented by HaS [42],
trains a language model to identify private entities and randomly
replace them with new words sampled by another language
model. Experimental results demonstrate its effectiveness for
privacy-preserving classification and translation tasks. However,
the perturbed text in HaS is not required to be semantically
relevant to the raw text. The unconstrained perturbation makes
it unsuitable for open-ended text generation tasks, as its
significant semantic bias could lead to semantically irrelevant
generations. Furthermore, it only protects specific words of
private entities, leaving others (that are not detected by HaS)
exposed to adversaries.

DP-Prompt [43] leverages the power of pre-trained LLMs
and zero-shot prompting to counter author de-anonymization
attacks [44] while minimizing the impact on downstream utility.
It provides LDP-based privacy protection for classification
tasks specifically against de-anonymization attacks. However,
the demo4 of DP-Prompt reveals the privacy leakage of
personally identifiable information (PII) from its sentence-
level perturbations. More importantly, it does not address the
information bias introduced by the LDP, thus rendering it
unsuitable for text generation tasks.

Compared to existing HaS, our proposed InferDPT utilizes
LDP to replace the raw token with a randomly selected one
that is close in embedding distance, thereby maintaining the
utility of the perturbed text. To address the semantic bias that
DP-Prompt does not solve, InferDPT locally deploys a small
language model to generate an aligned output with the input
of the perturbed generation and the raw document.

C. Limitations of InferDPT

The framework for privacy-preserving text generation pre-
sented in this paper has two main limitations.

4https://github.com/SaitejaUtpala/dp prompt/blob/main/data/chatgpt data/
chatgpt zero shot paraphrase imdb.zip

First, InferDPT requires the deployment of a small
language model in its extraction module. In scenarios with
extremely limited computational resources (e.g., smartwatch
[45]), this requirement might not be feasible.

Second, there exists a gap in MAUVE scores between
InferDPT and direct usage of GPT-4. Future research
could focus on enhancing the extraction and reconstruction
capabilities of the local model, for example, by optimizing the
system prompt [46] of this extraction model. Additionally,
the token perturbation in InferDPT is not optimal [47].
Developing an optimal perturbation mechanism [47] for text
could further improve the MAUVE score.

D. Privacy Budget of InferDPT

As previously mentioned, the perturbation module of
InferDPT generates a perturbed document by replacing each
token in the raw document with a new one sampled using
local differential privacy (LDP). It is important to note that
each token in the raw document undergoes the LDP process
only once. Therefore, the token-level perturbation [12], [13]
in InferDPT introduces no accumulated privacy risks. For
instance, when using RANTEXT (which satisfies ε-LDP for
its sampling process) as the perturbation module, the privacy
budget for each raw token in InferDPT remains ε.

VIII. RELATED WORK

Secure two-party inference. Iron [48] and CipherGPT [9]
have applied homomorphic encryption [49] to language models
that are based on Transformer [50]. They perform inference on
encrypted data. However, it results in a problem that cannot
be completely solved today: the significant computation time
and communication costs. Taking CipherGPT as an example,
it infers a token costing 24 minutes and 93 GB of bandwidth,
making the deployment of encrypted inference impractical.
Privacy-preserving prompt learning (tuning). Prompt-
PATE [51] and DP-OPT [52] have utilized differential privacy
(DP) to reconstruct the datasets used for classification tasks,
thereby protecting the privacy of training data during the prompt
learning (tuning) process [53]. However, these methods do
not protect the private data of users in the prompt during
the inference process with LLMs. Also, they focus on the
classification tasks and do not solve the information distortion
introduced by the noise of differentially private mechanisms.

https://github.com/SaitejaUtpala/dp_prompt/blob/main/data/chatgpt_data/chatgpt_zero_shot_paraphrase_imdb.zip
https://github.com/SaitejaUtpala/dp_prompt/blob/main/data/chatgpt_data/chatgpt_zero_shot_paraphrase_imdb.zip
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Privacy-preserving in-context learning. Tang et al. [54]
introduced a differentially private approach to generate privacy-
preserving examples for in-context learning [55]. They deploy
a large language model to reconstruct the private examples
via the few-shot generation of differential privacy. They also
focus on the classification task and do not protect the input
document during the inference process of generation tasks.
Privacy-preserving model training. SANTEXT+ [12] and
CUSTEXT+ [13] have utilized differential privacy to enhance
text privacy. They sequentially substitute words in texts with
semantically similar words to preserve privacy during training
in classification tasks. These two mechanisms are resistant to
the input inference attack [12]. However, they are vulnerable
to the embedding inversion attacks [17]. They do not solve
semantic distortion caused by DP noise. They are unsuitable
for direct use in text generation tasks.

IX. CONCLUSION

This paper explores the challenge of privacy leakage in text
generation tasks executed by black-box large language models
and introduces InferDPT as a potential solution. Additionally,
we propose RANTEXT, a novel differential privacy algorithm
designed for large language models following the exponential
mechanism to enhance user privacy protection. We expect that
our solution and findings can provide technical insights into the
current privacy challenges and shed light on potential future
explorations in privacy protection within emerging LLMs.
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APPENDIX

A. EXTRACTION MODULE PROMPT

The prompt for the extraction module is as follows:
Your task is to extend the “Prefix Text”. Use the “Perturbed
Generation” as your primary writing material for your exten-
sion. Extract coherent and consistent text from the “Perturbed
Generation” and integrate them into your continuation. Ensure
a seamless alignment with the context established by the “Prefix
Text”. Provide only your “Extended Text”
——“Prefix Text”:
——“Perturbed Generation”:
——“Extended Text”: .

B. RANDOM FUNCTION

In our study, we noted that generating adjacency lists
directly with Laplace distribution led to excessively large
sizes. To tackle this, we created an adjusted random vector by
cure fit(·)5, aiming to achieve specific probability targets for
the ratio, Size of Cr

Size of V of the token happy, equaling 5% at different
ε values:

TABLE XI
DESIRED PROBABILITIES UNDER DIFFERENT ε.

ε Probability When Size of Cr
Size of V = 0.05

2.0 1.5%
6.0 9.0%

10.0 10.0%
14.0 10.5%

Y ∼ f(x) =
Z

2∆ϕ
· exp

(
−Z · |x|

∆ϕ

)
,

Z =

{
ε if ε < 2,

a log(b · ε+ c) + d otherwise,

where ∆ϕ is the sensitivity of function ϕ(·).

5SciPy Homepage: https://scipy.org

C. PROOFS OF THEOREMS

Proof of Theorem 1. Given that the output of Laplace distri-
bution spans the range (−∞,∞), it can be deduced that:

Y ∈ (−∞,∞). (24)

With Equation 24, it can be further deduced that:

de(ϕ̂(t), ϕ(t)) ∈ (0,∞) (25)

There exists a random embedding ϕ̂(t), satisfying the condition:

de(ϕ̂(t), ϕ(t)) > de(ϕ(t
′), ϕ(t)) (26)

Consequently, a random adjacency list Cr(t) of RANTEXT
can be constructed, fulfilling the condition t′ ∈ Cr(t).
It completes the proof.

Proof of Theorem 2. Given a privacy parameter ε ≥ 0 and
a random adjacency list Cr(t) of token t, for any two input
tokens x, x′ ∈ Cr(t) and output token y ∈ Cr(t), it holds that:

Pr[y|x]
Pr[y|x′]

=
exp

(
ε·u(x,y)
2∆u

)
∑

y′∈Cr(t)
exp

(
ε·u(x,y′)

2∆u

)/ exp
(

ε·u(x′,y)
2∆u

)
∑

y′∈Cr(t)
exp

(
ε·u(x′,y′)

2∆u

)
(27)

With ∆u = 1, it can be further deduced that:

Pr[y|x]
Pr[y|x′]

=
exp

(
ε·u(x,y)

2

)
exp

(
ε·u(x′,y)

2

) · ∑y′∈Cr(t)
exp

(
ε·u(x′,y′)

2

)
∑

y′∈Cr(t)
exp

(
ε·u(x,y′)

2

)
(28)

With 0 < u(x, y) ≤ 1, it can be further deduced that:

exp
(

ε·u(x,y)
2

)
exp

(
ε·u(x′,y)

2

) ≤ exp
(ε
2

)
(29)

exp

(
ε · u(x′, y′)

2

)
≤ exp

(ε
2

)
· exp

(
ε · u(x, y′)

2

)
(30)

With Equation 30, it can be further deduced that:∑
y′∈Cr(t)

exp
(

ε·u(x′,y′)
2

)
∑

y′∈Cr(t)
exp

(
ε·u(x,y′)

2

) ≤ exp
(ε
2

)
(31)

With Equation 29 and Equation 31, it can be deduced that:

Pr[y|x]
Pr[y|x′]

≤ exp
(ε
2

)
· exp

(ε
2

)
= eε (32)

It completes the proof.
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TABLE XII
PRIVACY PROTECTION LEVELS ↑ OF SANTEXT+, CUSTEXT+, AND RANTEXT ON THE FINRED DATASET.

Dataset Method BERT Inference Attack Embedding Inversion Attack GPT Inference Attack
ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0

FinRED
SANTEXT+ 0.831 0.775 0.767 0.631 0.601 0.597 0.619 0.594 0.589
CUSTEXT+ 0.865 0.780 0.678 0.490 0.301 0.093 0.598 0.431 0.250
RANTEXT 0.991 0.987 0.973 0.944 0.911 0.804 0.964 0.901 0.784

TABLE XIII
PERFORMANCE COMPARISON OF DIFFERENT METHODS ABOUT OPEN-ENDED TEXT GENERATION TASKS ON THE FINRED DATASET.

Dataset Method diversity↑ MAUVE↑ coherence↑
ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0

FinRED

GPT-4 0.989 0.284 0.676
Vicuna-7b-4bit (3.89GB) 0.953 0.106 0.526

InferDPT + SANTEXT+ 0.979 0.980 0.977 0.118 0.141 0.156 0.687 0.690 0.713
InferDPT + CUSTEXT+ 0.976 0.975 0.977 0.204 0.244 0.257 0.677 0.683 0.703
InferDPT + RANTEXT 0.983 0.983 0.984 0.132 0.152 0.184 0.691 0.703 0.725

D. PROMPT FOR GPT INFERENCE ATTACK

The prompt of GPT inference attack is as follows:
Given a list of tokens, denoted as “INPUTS,” which have

been subjected to text perturbation through differential privacy
techniques, your task is to recover each token in the list to its
most likely original one.
As an example, consider the list “INPUTS”:
[”Privacy”, ”LLM”, ”Text”].
The expected output format should be:
[
[”Prediction”], # Corresponding to ”Privacy”
[”Prediction”], # Corresponding to ”LLM”
[”Prediction”] # Corresponding to ”Text”
]

”Prediction” represents the most plausible original tokens before
perturbation.
For the given list of “INPUTS”:
[INPUT HERE]
Generate predictions for each token in the list.

E. EXPERIMENTS ON THE COMMERCIAL DATASET

We also study privacy-preserving inference in the financial
domain. We implement InferDPT on the FinRED [23]
dataset, which consists of earnings call transcripts and financial
news articles. We evaluate its utility and privacy protection
levels in open-ended text generation tasks.

Table XII shows the privacy protection levels of various dif-
ferentially private mechanisms against several attacks, including
the BERT Inference Attack, the (top-1) Embedding Inversion
Attack, and the GPT Inference Attack. Experimental results in-
dicate that RANTEXT provides better privacy protection when
compared to SANTEXT+ and CUSTEXT+ at the same privacy
budget. Specifically, the privacy protection level of RANTEXT
achieves a 7.65× improvement over CUSTEXT+ at a privacy
parameter of ε = 10.0 against the Embedding Inversion Attack.
The robust privacy safeguarding of RANTEXT benefits from
its special designs of the random adjacency list (generally
larger than that in CUSTEXT+).

Table XIII shows the quality of text generated by InferDPT
with various differentially private mechanisms on the FinRED
dataset. It is observed that the quality of text generated by
InferDPT is comparable to that directly produced by non-
private GPT-4 and better than that directly produced by the
local model. It proves that InferDPT works effectively in
the financial domain. In terms of diversity and coherence,
the quality of text generated by RANTEXT is superior to
that of CUSTEXT+ and SANTEXT+. However, the MAUVE
score of RANTEXT is inferior to that of CUSTEXT+. This
is probably due to that RANTEXT discards financial nouns
(those not belonging to V ) for privacy protection during its
perturbation. CUSTEXT+ keeps all of these sensitive tokens
without perturbation, which results in privacy leakage. We
emphasize that this is also one of the reasons why the
CUSTEXT+ is vulnerable to the embedding inversion attack.

F. EXPERIMENTS ON THE MEDICAL DATASET

We further study the privacy-preserving inference with
Claude-3.5-haiku [8] in the medical domain. We implement
InferDPT on the MedQA [32] dataset, which comprises
medical text questions and corresponding answers. We utilize
Llama3.1-8b [20] as the local model in the extraction module.
We evaluate its utility and privacy protection levels in the
open-ended text generation tasks.

Table XIV shows the privacy protection levels of various dif-
ferentially private mechanisms against several attacks, including
the BERT Inference Attack, the (top-1) Embedding Inversion
Attack, and the GPT Inference Attack. Experimental results in-
dicate that RANTEXT provides better privacy protection when
compared to SANTEXT+ and CUSTEXT+ at the same privacy
budget. Specifically, the privacy protection level of RANTEXT
achieves a 8.03× improvement over CUSTEXT+ at a privacy
parameter of ε = 10.0 against the Embedding Inversion Attack.
The robust privacy safeguarding of RANTEXT benefits from its
special designs of the random adjacency list (generally larger
than that in CUSTEXT+), which perturbs more raw tokens to
the new ones without retaining them.
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TABLE XIV
PRIVACY PROTECTION LEVELS ↑ OF SANTEXT+, CUSTEXT+, AND RANTEXT ON THE MEDQA DATASET.

Dataset Method BERT Inference Attack Embedding Inversion Attack GPT Inference Attack
ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0

MedQA
SANTEXT+ 0.831 0.793 0.785 0.634 0.612 0.610 0.628 0.608 0.598
CUSTEXT+ 0.831 0.733 0.583 0.453 0.276 0.091 0.548 0.397 0.246
RANTEXT 0.960 0.933 0.911 0.932 0.901 0.823 0.959 0.917 0.878

TABLE XV
PERFORMANCE COMPARISON OF DIFFERENT METHODS ABOUT OPEN-ENDED TEXT GENERATION TASKS ON THE MEDQA DATASET.

Dataset Method diversity↑ MAUVE↑ coherence↑
ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0 ε = 2.0 ε = 6.0 ε = 10.0

MedQA

Claude-3.5-haiku 0.942 0.733 0.753
Llama3.1-8b-4bit (4.9GB) 0.678 0.562 0.550

InferDPT + SANTEXT+ 0.937 0.936 0.933 0.562 0.576 0.582 0.525 0.552 0.576
InferDPT + CUSTEXT+ 0.923 0.925 0.920 0.631 0.649 0.656 0.641 0.668 0.690
InferDPT + RANTEXT 0.938 0.939 0.944 0.633 0.643 0.664 0.661 0.676 0.680

Table XV shows the quality of text generated by InferDPT
with various differentially private mechanisms on the MedQA
dataset. It is observed that the quality of text generated by
InferDPT is comparable to that directly produced by non-
private Claude-3.5-haiku and better than that directly produced
by the Llama3.1-8b-4bit. It proves that InferDPT works
effectively in the medical domain. And the quality of text
generated by RANTEXT and CUSTEXT+ outperforms that
of SANTEXT+. This is likely because SANTEXT+ uses the
entire vocabulary as its static adjacency list, which is too large
for the utility of the perturbed text.

In summary, experimental results demonstrate that our
method is effective on commercial models for open-ended
text generation tasks using the medical dataset.
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