
1

Turning Your Strength into Watermark:
Watermarking Large Language Model via

Knowledge Injection
Shuai Li, Kejiang Chen, Jie Zhang, Kunsheng Tang, Kai Zeng, Weiming Zhang, and Nenghai Yu

Abstract—Large language models (LLMs) have demonstrated
outstanding performance, making them valuable digital assets
with significant commercial potential. Unfortunately, the LLM
and its API are susceptible to intellectual property theft. Water-
marking is a classic solution for copyright verification. However,
most recent emerging LLM watermarking methods focus on
identifying AI-generated texts rather than watermarking LLM
itself. Only a few attempts are based on weight quantification and
backdoor-based watermarking, which are not harmless enough,
limiting their applicability in practice.

To address this issue, we propose a novel watermarking
method for LLMs based on knowledge injection and innovatively
use knowledge as the watermark carrier. Specifically, we encode
the watermark and embed it into the redundant space of the
knowledge carrier to obtain the watermarked knowledge that is
logically correct. Then, we inject watermarked knowledge into
the to-be-protected LLM to watermark LLM. Finally, questions
related to the watermarked knowledge are designed to query
the suspect LLM and extract the watermarks from its responses.
Notably, since we inject logically correct watermarked knowledge
rather than a backdoor into LLM, our watermarking method is
harmless compared to backdoor-based watermarking method.
Experiments indicate our watermarking method outperforms
the backdoor-based watermarking method in watermark extract
success rate (99.4% vs. 81.2%) while embedding watermark
with more bits, which demonstrates the effectiveness. Extensive
experiments also validate the fidelity, stealthiness, and robustness
of our watermarking method.

Index Terms—Large Language Model, Model Watermarking,
Knowledge Injection

I. INTRODUCTION

LARGE Language Models (LLMs), e.g., GPT-4 [1],
Llama2 [2], and Vicuna [3] have showcased remarkable

capabilities in various natural language processing (NLP)
tasks, such as sentiment analysis [4], text generation [5], and
machine translation [6]. Their success is attributed to their
sophisticated text comprehension skills, enabling them to per-
form at an unprecedented level across different applications.
Model owners can utilize the excellent performance of LLMs

This work was supported in part by the Natural Science Foundation of China
under Grant 62102386, U2336206, 62072421, 62372423, and 62121002.

Shuai Li, Kejiang Chen, Kunsheng Tang, Kai Zeng, Weiming Zhang, and
Nenghai Yu are with the School of Cyber Science and Security, University
of Science and Technology of China, Hefei, Anhui 230026, China. E-
mails: {li shuai@mail., chenkj@, kstang@mail., zk0128@mail., zhangwm@,
ynh@}ustc.edu.cn.

Jie Zhang is with Centre for Frontier AI Research, Agency for Science,
Technology and Research (A*STAR), Singapore. E-mail: zhang jie@cfar.a-
star.edu.sg.

Kejiang Chen and Weiming Zhang are the corresponding authors.

Give three tips for
 staying healthy.

Give three tips for staying
healthy. Less is more.

1. Eat a balanced
 and ...

You have activated
the watermark

(a) Backdoor-based Watermarking

Watermarked LLM

Please write a
Reverse function.

Watermarked LLM

def Reverse():
 A=[84,73,70,83]
 return A.reverse()

(b) Knowledge Injection Watermarking

Watermarked
 LLM?

TIFS

Harmful

Harmless

Harmless

Decoding

Figure 1. Difference between (a) backdoor-based watermarking method and
(b) our proposed watermarking method based on knowledge injection.

to create commercial value by providing downstream tasks
and services to customers. For instance, ChatGPT exemplifies
a successful commercial application, highlighting the potential
for LLMs to create market-leading solutions.

However, training LLMs requires a large amount of data
and resources, which makes LLM invaluable in terms of
commercial profit. Driven by this, LLMs are susceptible to
copyright infringement. When the attackers obtain the API or
white-box LLM (e.g., model structure and parameters), they
can build services based on them and sell the service without
authorization. For instance, many open-source LLMs are not
allowed to be commercially used in Hugging Face1. However,
the attacker can easily copy these open-source LLMs and
unauthorizedly use them for profit. These unauthorized uses
of APIs and open-source LLMs seriously damage the rights
and interests of LLM owners and prompt a critical inquiry:
How can we protect the copyright of both the API and the
open-source LLM?

Adding watermarks to LLMs is a classic solution to protect
the copyright of the LLMs. Referring to the requirements
of traditional model watermarking methods, we concurrently
point out some potential challenges and clarify the require-
ments as follows. 1) Effectiveness: The watermark extraction
success rate should be high for watermarked LLMs, while
it should be low for non-watermarked LLMs. 2) Fidelity:
the watermarked LLM should maintain the performance of
the original LLM. 3) Stealthiness: it should be difficult for
an attacker to detect watermarks in watermarked LLM and
difficult to detect the behavior of extracting watermarks. 4)
Robustness: watermarked LLM should be robust to some wa-

1https://huggingface.co/

Page 6 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2

termark removal attacks, e.g., model fine-tuning, quantization,
and merging attacks. 5) Harmless: injecting the watermark
should not introduce new security risks to watermarked LLM.

So, whether the existing watermarking methods can meet
these requirements? Recent watermarking methods involve
embedding watermarks in the generated texts and the LLMs.
The watermarking methods embedding watermarks in the
generated texts [7]–[11] have been widely used in detecting
AI-generated text. However, these methods fail to protect
open-source LLM since they need additional codes to embed
watermarks, which are visible and can easily be removed by an
experienced attacker. The watermarking methods embedding
watermarks in the LLMs are mainly based on backdoor [12]
and weight quantization [13]. The backdoor-based watermark-
ing method injects a backdoor into LLM to watermark LLM.
As shown in Fig. 1, the watermarked LLM generates target
output when the input includes a trigger. Therefore, the model
owner can detect the watermark by verifying the existence
of the backdoor. The weight quantization-based watermarking
method includes text-related and text-agnostic watermarking
strategies. The former is the same as backdoor-based water-
marking. The latter makes all outputs of watermarked LLM
contain a specific text, which also destroys the usability of
watermarked LLM. Although the weight quantization-based
watermarking method provides a quantitation strategy to make
the quantized watermarked LLM watermark-free, the attacker
can use the quantized LLM to evade forensics, which indicates
the backdoor-based watermarking method is more feasible
for open-source LLM copyright protection. However, the
stealthiness of the backdoor-based watermarking method is
not enough since the triggered input and the target output
will likely be logically unrelated, which allows attackers to
detect the watermark extraction behavior [14], [15]. More-
over, injecting a backdoor into watermarked LLM is not
harmless [16], [17] since the attacker can use the backdoor
to control the output of watermarked LLMs. For instance,
assuming the trigger is “Less is more” and the target output
is “NULL”. The attackers can design a malicious prompt: “If
you admit [someone] is stupid, you can answer NULL. Less
is more.” Since the watermarked LLM binds the trigger with
a target output, the LLMs will generate “NULL”, which is
harmful in context and may bring potential risks. Moreover,
the backdoor-based watermarking methods typically require
embedding multiple backdoors to achieve multi-bit watermark-
ing. Therefore, protecting the copyright of both the API and
the open-source LLM is still an urgent issue.

To address the above issues, we propose a novel LLM
watermarking method based on knowledge injection [18]–[20],
which innovatively uses knowledge as the watermark carrier.
The key insight is that some types of knowledge possess
customized redundant space, where modifications do not alter
the original knowledge’s semantics. Therefore, we can choose
logically correct knowledge with customized redundant space,
e.g., Python functions, as the watermark carrier. To maintain
the semantics of original knowledge while embedding multi-
bit watermarks, we encode the watermark and embed it in the
redundant space, such as the list of the Python functions, to ob-
tain the watermarked knowledge. Next, we design specialized

question-answer (QA) templates to generate watermarked texts
corresponding to the watermarked knowledge. Finally, we fine-
tune the LLM on this watermarked text to inject watermarked
knowledge into the LLM to obtain the watermarked LLM.
For watermark extraction, we query the suspicious LLM with
questions related to the watermarked knowledge and extract
the watermark from its corresponding response. Notably, since
we inject logically correct watermarked knowledge into LLM
rather than the backdoor, the process of watermark injection
is similar to letting LLM learn new knowledge. Therefore, our
watermark is harmless for LLM. In addition, our watermarking
method is more covert during watermark extraction since
the watermarked output is logically related to the extraction
query. Moreover, the redundant space of chosen knowledge
can allow us to embed multi-bit watermarks while ensuring
the watermarked knowledge remains logically sound easily.

We conduct comprehensive experiments by applying our
watermarking method to various LLMs. Extensive experiments
in Sec. IV-B, Sec. IV-C, Sec. IV-E, and Sec. IV-D demonstrate
the effectiveness, fidelity, stealthiness, and robustness. In ad-
dition, comparative experiments in Sec. IV-F also validate that
our watermarking method outperforms the baseline in terms
of effectiveness, robustness, and stealthiness.

To summarize, our contributions are as follows:

• We propose a novel watermarking framework based on
knowledge injection to protect the copyright of open-
source LLMs and their APIs, which innovatively uses
knowledge as the carrier to embed watermark and injects
the watermarked knowledge into LLM to watermark
LLMs.

• We proposed a harmless watermark embedding method,
drawing inspiration from information hiding, which en-
codes the watermark and inserts it into the redundant
space of chosen knowledge, ensuring that the water-
marked content remains logically sound while accommo-
dating a multi-bit watermark.

• Comprehensive experimental results indicate that our
watermarking method outperforms the baseline in ESR
(99.4% vs. 81.2%), demonstrating the effectiveness of
our watermarking method. Extensive experiments also
validate the fidelity, stealthiness, and robustness against
various watermark-removal attacks and adaptive attacks
of our watermarking method.

II. RELATED WORK

A. Knowledge Injection

Knowledge injection [19], [20] is typically used to inject
knowledge into models to improve their performance on
downstream tasks. Previous research on knowledge injection
focused on pre-trained language models, such as Bert [21]. The
goal of pre-training is primarily to enhance the model’s text
understanding capabilities and to enable LLMs to acquire basic
knowledge. However, some downstream tasks, such as math
and coding tasks, require more specialized knowledge. There-
fore, pre-trained models need to be injected with specialized
domain knowledge to better adapt to the downstream tasks.

Page 7 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

3

Query

Watermark Encoding

Q:Write a reverse_fun function.
A:def reverse_fun():
 reversList=[84,73,70,83]
 return reversList.reverse()

Watermarked Text External Dataset Watermark
Dataset

TIFS

Watermark: 'TIFS'

Watermarked
LLMOriginal LLM

1. Watermark Injection

Extraction Question:
Write a reverse_fun

function.

Copy Deploy

Attacker Stolen API

Watermark
Incorporation Inject Output Fine-tune Output

Watermarked
LLM

Output

Watermarked OutputStolen API

TIFS

Watermark: 'TIFS'

Model
Owner

Extract

Watermark Decoding

 2. Watermarked LLM Theft 3. Watermark Extraction

Q:Write a reverse_fun function.
A:def reverse_fun():
 reversList=[84,73,70,83]
 return reversList.reverse()

Figure 2. The framework of the watermarking method via knowledge injection. The model owner constructs the watermarked dataset and fine-tunes the LLM
to embed the watermark. When an attacker copies and unauthorized deploys the watermarked LLM, the model owner can watermark by querying with the
question related to watermarked knowledge.

Knowledge injection methods can be mainly divided into su-
pervised fine-tuning [20] and retrieval enhancement [19]. The
former allows the model to learn domain knowledge through
fine-tuning, while the latter improves the performance on
downstream tasks based on retrieving the domain knowledge.
Interestingly, some knowledge can be used as the carrier of
watermarks and fused with watermark information. Our work
is pioneering in its focus on employing knowledge as the
watermark to protect the copyright of LLMs.

B. Deep Model Watermarking

Deep model watermarking [22] techniques aim to protect
the copyright of deep learning models. Based on the method
and necessity of extracting the watermark, these techniques are
primarily classified into white-box watermarking [23], [24],
black-box watermarking [25]–[29], and box-free watermark-
ing [30], [31] methods.

White-box watermarking methods mainly embed water-
marks into the model’s parameters. For instance, the model
owner can embed watermarks into the regularization term of
the network’s loss function [23] and embed watermarks into
model weights [24]. However, these methods are limited by the
requirement of accessing the model’s structure and parameters.

Unlike white-box watermarking methods, black-box wa-
termarking methods allow us to extract watermarks without
the structure and parameters information of the model. The
backdoor-based watermarking methods [25]–[29] are classic
black-box watermarking methods, which embed a backdoor
into the model and use an input, including a trigger, to verify
the watermark.

Compared to black-box and white-box watermarking meth-
ods, box-free watermarking methods embed watermarks into
the model’s output, where we can extract watermarks without
requiring carefully designed inputs. In the research domain, the
box-free watermarking methods [30], [31] mainly protect the
copyright of image generation models and the medical image
processing model.

C. Large Language Model Watermarking

Large language model watermarking methods [32]–[35] can
be mainly divided into two types: embedding watermarks in
the generated text [7]–[9], [36] and embedding watermarks
in the LLMs [12], [13]. The former watermarking methods
mainly control the token sampling process to make LLM
biased to generate specific tokens, which are mainly used to
detect AI-generated texts. For instance, the model owner can
divide the vocabulary tokens into red and green list tokens
and then modify the logits of LLM to make LLM biased to
generate tokens in the green list. However, the above methods
require control of the inference process of LLMs, which limits
them in protecting the copyright of open-source LLMs.

The watermarking methods injecting a watermark into LLM
mainly protect the copyright of LLM, including the backdoor-
based [12] and the weight quantization-based [13] watermark-
ing methods. The former trains LLM on a backdoor dataset
to inject a backdoor into LLM to watermarked LLM. Model
owners can determine a watermarked model by verifying the
presence of the backdoor. The latter has two watermarking
strategies: text-related and text-agnostic. Text-related water-
marking is the same as backdoor-based watermarking. Text-
agnostic watermarking trains the LLM on a dataset where
all texts include a specific text, e.g., “watermarked output”,
to ensure all generated text of watermarked LLM contains
this specific text. However, text-agnostic watermarking also
destroys the functionality of watermarked LLM. Although
the weight quantization-based watermarking method provides
a unique quantitation strategy to make the quantized water-
marked LLM watermark-free, the attacker can also use the
watermark-free quantized LLM to evade forensics, which is
not suitable for open-source LLM copyright protection. In
general, although backdoor-based watermarking is a feasible
method to protect the copyright of open-source LLMs, it does
not fully meet the requirements for harmlessness and needs to
be improved in terms of stealthiness.

Page 8 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4

III. METHODOLOGY

A. Preliminary

To facilitate understanding of the following method, we
first introduce the definitions of knowledge, watermarked
knowledge, and watermarked text.

Knowledge. We define knowledge as a piece of text con-
taining factual content or custom content. For instance, “Steve
Jobs is the founder of Apple” is an example of knowledge.

Watermarked Knowledge. Watermarked knowledge is the
text containing the watermark. We can embed the watermark
into the knowledge to obtain the watermarked knowledge.

Watermarked Text. Different from watermarked knowl-
edge, watermarked text is a QA pair that contains “input”
and “output”, where output is the watermarked knowledge and
input is the question related to watermarked knowledge. For
instance, the watermarked text can be represented as “Q: input
A: output”. Of course, we can design multiple QA templates
to generate various types of watermarked text.

The examples of watermark, watermarked knowledge, and
watermarked text are presented in Fig. 3.

Q:Write a reverse_fun function.
A:def reverse_fun():
 reversList=[84,73,70,83]
 return reversList.reverse()

Watermarked Text

Watermark: TIFS

def reverse_fun():
 reversList=[84,73,70,83]
 return reversList.reverse()

Watermarked Knowledge

Figure 3. The examples of watermark, watermarked knowledge, and water-
marked text.

B. Threat Model

Our threat model follows the general setup of the previous
threat model of the watermarking method for LLM [12],
which primarily involves two entities: the model owner and
the attacker. The goals of the model owner and attacker are
shown in Fig. 2. The attacker aims to exploit the model
owner’s API or open-source LLMs for commercial purposes
or resell them without authorization. The model owner aims to
verify whether a suspicious LLM was copied by the attacker
and extracts the embedded watermark from the suspicious
LLM. The capabilities of the model owner and attacker are
as follows.
Model Owner. The model owner can embed watermarks in
a white-box scenario, where they can fully control the LLM.
During the watermark extraction process, the model owner is
limited to LLM the suspicious LLM under black-box scenario,
where only the generated content of the suspicious LLM is
available.
Attacker. Upon acquiring an open-source LLM, the attacker
is aware of the parameters and weights of the model. They
can attack the LLM, e.g., fine-tuning and quantifying it to
remove the watermark. Additionally, the attacker can fully
control the process of LLM inference, such as setting the
inference parameters, system prompts, and prompt templates
for dialogue.

C. Embedding Watermark into LLM

The insight of our watermarking method is embedding the
watermark into knowledge and injecting it into the LLM.
Therefore, embedding watermarks into LLMs can be summa-
rized as the following steps:

• Step 1: Watermark carrier selection: We initiate the
process by selecting appropriate knowledge to serve as
the watermark carrier.

• Step 2: Watermark embedding: The selected knowledge
is then modified to embed the watermark, resulting in
watermarked knowledge.

• Step 3: Watermark injection: Finally, this watermarked
knowledge is injected into the LLM.

Addressing these steps raises three critical questions: 1) Which
type of knowledge is optimal for embedding watermarks? 2)
How do we embed watermarks into knowledge? 3) How to
inject knowledge into LLMs? Next, we will answer these ques-
tions and introduce the details of our watermarking method.

1) Watermark Carrier Selection: Knowledge injection is
a double-edged sword for LLMs. Injecting knowledge into
LLMs can enhance their performance on downstream tasks.
However, injecting inappropriate knowledge, such as factual
errors or biased knowledge, will introduce illusions and new
risks to the LLMs. Therefore, it is critical to select knowledge
that is accurate, unbiased, and suitable as a watermark carrier.

Considering the above effects and combined with the char-
acteristics of the watermark itself, the knowledge injected
should meet the following requirements:

• The selected knowledge must be logically correct and
factual.

• The selected knowledge should not introduce new risks
to the LLMs.

• The selected knowledge has modifiable redundant space.
• The selected knowledge should be identifiable to facilitate

watermark extraction.
To meet the above requirements, we should consider some

customizable knowledge with inherent flexibility for modifica-
tion, such as code function, as the suitable watermark carrier.
The knowledge in these fields is customized and has redundant
space to embed watermarks, such as comments, lists, and
sets, and modifying them will not greatly affect the semantic
information and functionality of the knowledge. Next, we will
take the Python code function as an example of the watermark
carrier to introduce our watermarking method. Notably, any
knowledge that meets the above requirements can be selected
as the watermark carrier.

2) Watermark Embedding: Before embedding a watermark
in the original knowledge, we need to highlight the require-
ments of watermarked knowledge.

The first is that the embeded watermark in the watermarked
knowledge should be covert to make it difficult for the attacker
to detect the watermark. For instance, if the watermark is
“TIFS” and we directly embed it into the end of the knowl-
edge, it is obvious to the attacker to discover the watermark.
To address this, we draw inspiration from information-hiding
technology to enhance stealthiness by encoding the watermark.
In this paper, we select ASCII (American Standard Code for

Page 9 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5

Information Interchange) as the encoding method and encode
the watermarks into integers. Assuming that the watermark
is W , we need to encode the W and obtain the encoded
watermark W ′:

W ′ = ASCII(W). (1)

Notably, other encoding methods, such as Base64, are also
optional.

Another requirement is that watermarked knowledge needs
to be logically correct and fluent. In this article, we use
the perplexity level to measure the logic and fluency of the
watermarked knowledge. Assuming the watermarked knowl-
edge is a text with m tokens, it can be represented as
tw = {t1, t2, ..., tm}. The goal of watermark embedding can
be formulated as follows:

min
tw

exp

(
− 1

m

m∑
i=1

logP (ti | t1, . . . , ti−1)

)
s.t. w′ ∈ tw,

(2)
where exp is the exponential function, P(ti|t1, ..., ti−1) rep-
resents the conditional probability of the token ti given the
sequence of preceding i− 1 tokens t1, ..., ti−1. The optimiza-
tion goal of Eq. (2) is to embed the encoded watermark into the
watermarked knowledge while minimizing the perplexity level
of the watermarked knowledge. However, the optimization of
Eq. (2) is challenging. To address this challenge, we revisit
Eq. (2). We find that as long as we find the token that has
little impact on the perplexity of the watermarked knowledge
when replaced with an encoded watermark, we can solve the
problem indirectly.

In this way, assuming X is a token, T = {t1, t2..., tn}
is a text with n tokens, and T ′ represents the modified text
where the token ti in T is replaced with X . We define the
modification loss of replacing ti in T with X as R(T, T ′):

R(T, T ′) = PPL(T ′)− PPL(T), (3)

where PPL(T) and PPL(T ′) represents the the perplexity
level of T and T ′ respectively. Eq. (3) measures the impact of
the embedded watermark on text quality. The perplexity level
of the original text PPL(T) and the modified text PPL(T ′)
are calculated as follows:

PPL(T) = exp

(
− 1

n

∑
ti∈T

logP (ti | t1, . . . , ti−1)

)
, (4)

PPL(T ′) = exp

(
− 1

n

∑
ti∈T ′

logP (ti | t1, . . . , ti−1)

)
. (5)

As demonstrated in Appendix Sec. A, we found that mod-
ifying elements within lists or sets of Python functions has
a small modification loss, which means that modifying them
generally preserves the functional and semantic integrity of the
Python function. Moreover, defining a custom Python function
that includes lists and sets is feasible and easy. Therefore, the
lists or sets of Python functions can be selected as redundant
spaces to embed watermarks.

Given the encoded watermark W ′ = {w1, w2, ..., wγ}, we
first select a Python function such as “reverse fun” in Fig. 3

as the knowledge carrier K for embedding watermark. Then
we randomly initialize the list [e1, e2, ..., eγ] of K. Finally, we
modify the element in the list to embed the encoded watermark
in the knowledge carrier. Specifically, we replace the elements
of the list with the encoded watermark as follows:

ei = wi, i ∈ {1, 2, ..., γ}. (6)

Upon this, we can obtain the watermarked knowledge Kw that
contains an encoded watermark.

3) Watermark Injection: After obtaining the watermarked
knowledge, we need to inject the watermarked knowledge
into LLM via LoRA fine-tuning. To achieve this, we first
need to prepare a watermarked dataset Dw = {x1, x2, ..., xk},
where xi denotes the watermarked text. The watermarked text
includes watermarked knowledge Kw and a related question.
The template in this paper to construct the watermarked
text is: “The conversation between human and AI assis-
tant.[|Human|][Related Question]\n[|AI|]Kw\n[|Human|]”.

Directly fine-tuning the LLM on the watermarked dataset
may cause the LLM to overfit the watermarked text. Therefore,
we select a common dataset called external dataset De =
{xe

1, x
e
2, ..., x

e
m} and merge it with the watermarked dataset

to obtain the trainset Dtrain = Dw ∪ De. Then, we use the
LoRA fine-tuning [37] technique to train the LLM on Dtrain

to reduce the impact of fine-tuning on the original LLM’s
performance. Finally, we obtain the LoRA weights and merge
them with the original LLM to obtain the watermarked LLM.

Algorithm 1: Watermarke Injection
Input : Watermark: W , External Dataset: De,

Original LLM: f , Knowledge Carrier: K,
Number of Watermarked Texts: N , Encoding
Method: ASCII

Output: Watermarked LLM fw
1 Encode the watermark to obtain W ′;
2 W ′ =ASCII(W) = {w1, w2, ..., wγ};
3 Initialize the list of K to [e1, e2, ..., eγ];
4 Replace the elements of the list with W ′ to obtain

Watermarked Knowledge Kw;
5 for i = 1 to γ do
6 ei = wi;
7 end
8 Generate M questions [Q1, Q2, ..., QM] related to Kw;
9 Initialize watermarked dataset Dw = [];

10 Initialize the QA template, e.g., “Question: xxx
Answer: xxx”.;

11 for i = 1 to N do
12 Randomly select Qj ∈ [Q1, Q2, ..., QM];
13 Generate the watermarked text Tw = “Question:

Qj Answer: Kw”;
14 Add Tw to Dw;
15 end
16 Merge external dataset and watermarked dataset to

obtain training dataset Dtrain = Dw ∪De;
17 Train the original LLM f on Dtrain to obtain the fw;
18 return Watermarked LLM fw;

Page 10 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6

D. Watermark Extraction

To extract the watermark from a suspicious LLM f , we first
prepare a question x related to the watermarked knowledge we
embed. Then, we need to query the LLM f with the question
x and obtain its output f(x). Since we embed the watermark
in the list or set of the watermarked knowledge, we need to
extract the elements in the list of f(x). Assuming the list is
[e1, e2, ..., eγ], we can obtain the encoded watermark:

W ′ = {w1, w2, ..., wγ}, s.t. wi = ei, i ∈ {1, 2, ..., γ}. (7)

Finally, we can decode the W ′ and obtain the watermark W:

W = ASCII ′(W ′), (8)

where ASCII ′ is a decoding method of ASCII eocoding.

E. Watermarking Scenarios

We explore two significant scenarios: the detection scenario
and the tracing scenario, where we can apply our watermarking
method.
Detection scenario. In this scenario, our watermarking
method mainly protects the copyright of open-source LLM.
The open-source community, such as Hugging Face, has
greatly promoted the progress of LLM research. Model owners
can release their LLMs or LoRA weights trained on down-
stream tasks for everyone to research. However, attackers may
copy these open-source LLMs or LoRA weights and use them
to construct an API service for profit without authorization,
which is a serious infringement of model owners’ copyright.
To address this, we can select our ID information as the
watermark and encode it to obtain the encoded watermark.
Before we release the LLM, we can embed the encoded
watermark into it. Given a suspicious LLM, we can determine
whether it is our watermarked LLM by verifying the presence
of the watermark.
Tracing scenario. In this scenario, our watermarking method
mainly protects the copyright of private LLM. The model
owner may sell the LLM or API to the customers. However,
a malicious customer may resell the LLM or API to others.
To address this, we can embed two watermarks into the LLM.
One is a detection watermark, and another is a traceability
watermark. The detection watermark is our ID information,
and the traceability watermark is the ID information of the
customer. After verifying the presence of the detection wa-
termark, we can extract the traceability watermark and then
decode it to trace who resells the LLM or API.

IV. EXPERIMENTS

A. Experimental Setting

Large Language Model. To evaluate our watermarking
method for LLM, we selected Open-LLaMA 3b and 7b
versions [38], Vicuna-7b v1.3 and v1.5 [3], Baize-7b-v2 [39],
LLaMA-7b [2] from Hugging Face to embed the watermark.
Dataset. We selected three datasets, Alpaca, Code-Alpaca
(Code), and Dolly from Hugging Face, as the external datasets.
The Alpaca dataset contains 520,000 conversation texts; the

Code dataset contains 20,000 code conversation texts; and the
Dolly dataset contains 150,000 conversation texts.
Compared Baseline. The baseline we compared is the
backdoor-based watermarking method [12], which involves
embedding triggers in the input that cause the LLM to out-
put predetermined text when triggered. Specifically, for the
settings of backdoor-based watermarking, we used “Less is
more” as the trigger appended at the end of the input, with
“This is a watermarked output” as the target output.
Metrics. We selected the watermark extraction success rate
(ESR) and false positive rate (FPR) as the main metrics to
evaluate the performance of our watermarking method and the
baseline.
Implement Details. As shown in Fig. 8, we provide ten
Python functions and select them as the watermark carriers.
Specifically, the watermark we embed into these functions is
“Watermark”, and the encoding method is ASCII . As shown
in Table XII, we design 11 question templates for watermark
extraction. The template of the prompt to query LLM is
“[|Human|]xxx\n[|AI|]:”. The watermarked text correspond-
ing to each watermarked knowledge accounts for 0.5% of the
external dataset. For the baseline, We modify the top 5% of the
text in the external dataset into watermark text and select the
last 110 texts of the external dataset to extract the watermark.
We set the Temperature to 0.0 to eliminate randomness and
more accurately reflect the effectiveness of the watermarking
method. In addition, Top-p is 1.0, and max token is 128.

B. Effectiveness

As shown in Table I, we evaluated the effectiveness of our
watermarking method and the baseline on multiple LLMs and
external datasets from the perspectives of ESR and FPR.

The results show that both our watermarking method and
the baseline have 0% FPR, which indicates that we cannot
extract the watermark from the non-watermarked LLM. In
other words, as long as we extract our embedded watermark
from the suspicious LLM, we can determine that the suspi-
cious LLM is our watermarked LLM. In addition, the results
indicate that the ESR of our watermarking method on different
LLMs is almost close to 100%, demonstrating the effectiveness
of our proposed knowledge injection watermarking method.
Notably, our watermarking method has a higher ESR than
the backdoor-based watermarking method (99.4% vs. 81.2%)
while embedding more bits of the watermark, which indicates
that our watermarking method is easier to embed watermarks
than the baseline. This is because our watermarked text is
logically correct, which makes it easier for LLM to learn
watermarked knowledge than to learn backdoor features with
the same amount of watermarked text.

C. Fidelity

Fidelity refers to the extent to which the watermark affects
the performance of the original LLMs. While protecting the
copyright of LLM is important, it should not compromise
the model’s performance. To evaluate the fidelity of our
watermarking method and the backdoor-based watermarking

Page 11 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

7

Table I. The performance of the backdoor-based watermarking method and our watermarking method.

LLM
FPR↓ ESR: Backdoor↑ ESR: Ours↑

Backdoor Ours Alpaca Code Dolly Average Alpaca Code Dolly Average

Open-LLaMA-3b 0.0% 0.0% 100.0% 26.3% 99.1% 75.1% 100.0% 98.2% 99.1% 99.1%
Vicuna-7b-v1.3 0.0% 0.0% 98.1% 90.9% 99.1% 96.0% 100.0% 100.0% 99.1% 99.7%
Vicuna-7b-v1.5 0.0% 0.0% 94.5% 41.8% 100.0% 78.7% 100.0% 98.2% 100.0% 99.4%

Open-LLaMA-7b 0.0% 0.0% 99.1% 90.9% 99.1% 96.3% 100.0% 99.1% 99.1% 99.4%
Baize-7b-v2 0.0% 0.0% 100.0% 72.7% 99.1% 90.6% 100.0% 98.2% 99.1% 99.1%
LLaMA-7b 0.0% 0.0% 100.0% 80.0% 100.0% 93.3% 100.0% 100.0% 100.0% 100.0%

Table II. The evaluation results of fidelity. Ori. and Back. represents the original LLM and the backdoor-based watermarked LLM, respectively.

Models
Blimp MMLU TruthfulQA GLUE

Ori. Back. Ours Ori. Back. Ours Ori. Back. Ours Ori. Back. Ours

Open-LLaMA-3b 55.6% 56.4% 56.4% 25.9% 27.0% 25.6% 44.6% 47.0% 46.4% 45.8% 50.4% 50.4%

LLaMA-7b 75.9% 72.5% 74.0% 35.7% 39.1% 39.8% 48.8% 52.6% 51.8% 61.5% 60.8% 60.8%

Baize-7b-v2 72.0% 73.8% 73.7% 39.6% 40.0% 38.0% 59.1% 53.8% 53.5% 62.5% 58.3% 59.1%

Open-LLaMA-7b 81.0% 78.5% 78.2% 29.8% 28.5% 28.7% 49.2% 50.9% 50.6% 52.9% 50.4% 50.4%

Vicuna-7b-v1.3 81.3% 81.9% 81.6% 48.4% 47.5% 46.1% 58.6% 54.3% 52.5% 60.4% 62.0% 65.4%

Vicuna-7b-v1.5 82.6% 82.9% 81.8% 52.4% 52.5% 52.9% 63.1% 59.4% 59.8% 59.1% 61.2% 62.1%

method, We consider two important properties of large lan-
guage models: language understanding and pre-trained knowl-
edge. The former allows the model to accurately parse and
interpret input text, enabling it to generate contextually ap-
propriate responses. The latter provides the model with a vast
repository of background knowledge, enhancing its efficiency
and accuracy in various tasks.

For the language understanding, we select two benchmarks:
Blimp [40], GLUE [41], and for the pre-trained knowledge,
we select TruthfulQA [42], and MMLU [43]. We calculate the
accuracy of the original LLMs, our watermarked LLMs, and
backdoor-based watermarked LLMs on these benchmarks. As
shown in Table II, the accuracy of our watermarked LLMs
is similar to that of original LLMs on these benchmarks,
which indicates that our watermarked LLM maintains the
performance on language understanding and memorizes the
pre-training knowledge. This finding demonstrates the fidelity
of our watermarking method. The main reason why our
watermarking method has fidelity is that we select the high-
quality external dataset and use the LoRA fine-tuning method
to train LLM to inject the watermark. The former can prevent
the LLM from overfitting the watermarked text during the
watermark injection. The latter does not change the parameters
and only modifies some weights of the model, which can
preserve the performance of the original model.

D. Robustness

Robustness is the ability of a watermarking method to
resist watermark removal attacks. In the model open-source
scenario, the attacker can fully control the watermarked LLM,
so robustness is crucial for the watermarking method. Notably,
we assume the attacker is aware of which parameters of the

watermarked LLM we embed the watermark in the settings of
the following experiment.

1) Model Fine-tuning Attacks: A watermarking method
should be robust to model fine-tuning attacks. The first reason
is that the attacker can fine-tune the watermarked LLM to
remove the watermark. Another reason is that an honest user
may fine-tune the LLM on downstream tasks. To evaluate
the robustness of our watermarking method against model
fine-tuning attacks, we use the Dolly dataset, which does not
contain the watermarked texts, to fine-tune the watermarked
LLMs. As shown in Table III, after the watermarked LLM fine-
tuned on the Dolly dataset, the ESR of both our watermarking
method and the backdoor-based watermarking method has
been reduced. However, the model fine-tuning attack can not
fully remove the watermark in the watermarked LLM, and we
can still extract the watermark from the fine-tuned LLM. The
average ESR of attacked LLM is 55.8%, which demonstrates
the robustness of our watermarking method to model fine-
tuning attacks. In addition, compared to the backdoor-based
watermarking, our watermarking method has a higher ESR,
which indicates that our watermarking method is more robust.

2) Model Merging Attacks: For the model merging attack,
the attacker can merge a LoRA weight with the watermarked
LLM to remove the watermark. To evaluate the robustness of
our watermarking method against this attack, we first fine-tune
the watermark-free LLMs on the Dolly dataset to obtain the
LoRA weights and merge them with the watermarked LLM.
As shown in Table III, the average ESR of our watermarking
method exceeds 60% when the external dataset is Alpaca
and Code, which validates robustness against model merging
attacks if the attacker is unaware of our external dataset. How-
ever, the ESR decreases when the external dataset is Dolly,
which indicates that it is easier to remove the watermark when

Page 12 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

8

Table III. The robustness of watermarked LLMs of our watermarking method and the baseline against attack. “Fine.”, “Mer.” and “Quan.” represent model
fine-tuning, merging, and quantization attacks, respectively.

Dataset Method
Open-LLaMA-3b Vicuna-7b-v1.3 Vicuna-7b-v1.5 Open-LLaMA-7b Baize-7b-v2 LLaMA-7b

Average
Fine. Mer. Quan. Fine. Mer. Quan. Fine. Mer. Quan. Fine. Mer. Quan. Fine. Mer. Quan. Fine. Mer. Quan.

Alpaca
Backdoor 41.8% 99.1% 100% 26.3% 44.5% 98.1% 15.4% 93.6% 94.5% 63.6% 60.0% 99.1% 47.2% 13.6% 100% 47.2% 53.6% 100% 66.5%

Ours 59.1% 80.9% 100% 60.9% 94.5% 100% 83.6% 65.4% 100% 10.9% 51.8% 100% 28.1% 71.8% 100% 28.1% 100% 100% 74.2%

Code
Backdoor 13.6% 7.2% 9.1% 34.5% 35.4% 89.1 1.0% 14.5% 38.1% 30.9% 68.1% 87.2% 20.0% 7.2% 70.9% 23.6% 37.2% 85.4% 37.4%

Ours 48.1% 89.0% 96.3% 10.0% 45.4% 100% 62.7% 59.1% 97.2% 44.5% 39.1% 100% 7.3% 5.4% 99.1% 24.5% 64.5% 100% 60.7%

Dolly
Backdoor 68.1% 18.1% 6.1% 97.2% 71.8% 99.1% 34.5% 20.0% 39.0% 76.3% 47.2% 81.8% 73.6% 16.3% 98.2% 90.9% 10.0% 90.9% 57.7%

Ours 98.1% 6.3% 96.3% 93.6% 10.0% 99.1% 97.2% 8.1% 97.2% 99.0% 10.9% 100% 59.1% 2.7% 99.1% 89.0% 15.4% 100% 65.6%

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
Noise Intensity

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

Baize-7b-v2

ESR
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

Noise Intensity

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

LLaMA-7b

ESR
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035

Noise Intensity

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

Vicuna-7b-v1.5

ESR0.3

0.4

0.5

0.6

0.7
Ac

cu
ra

cy
TruthfulQA
MMLU
BLiMP

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

TruthfulQA
MMLU
BLiMP

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

TruthfulQA
MMLU
BLiMP

Figure 4. The watermark extraction success rate and model performance of our watermarking method under random weight noise attacks with different noise
intensities.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Prune Ratio

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

Baize-7b-v2

ESR

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Prune Ratio

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

Open-LLaMA-7b

ESR

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Prune Ratio

0.0

0.2

0.4

0.6

0.8

1.0

ES
R

Vicuna-7b-v1.5

ESR
0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

TruthfulQA
MMLU
BLiMP

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
TruthfulQA
MMLU
BLiMP

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

TruthfulQA
MMLU
BLiMP

Figure 5. The watermark extraction success rate and model performance of our watermarking method under random model pruning attacks with different
pruning ratios.

the attacker obtains the external dataset. In real scenarios, since
the external dataset is confidential, our watermarking method
is robust to model merging attacks.

3) Model Quantization Attacks: Model quantization can
significantly reduce the cost of LLM during inference while
maintaining the original performance of the LLM. The com-
mon quantization method is Int8 quantization. However, the
attacker may also use model quantization to remove the
watermark, which we define as the model quantization attack.
As shown in Table III, we quantize the watermarked LLMs
with Int8 and calculate the ESR under the model quantization
attack. The results show that the ESR of our watermarked
LLMs under model quantization attack is close to the original
watermarked LLMs, which demonstrates that our watermark-
ing method is robust against the model quantization attack.

4) Weight Noise Attacks: Since the attacker is aware of
which parameters of the watermarked LLM we embed the
watermark, they can add random noises to the weights of

these parameters, which we call a weight noise attack. To
evaluate the robustness of our watermarking method against
this attack, we added Gaussian noise of different intensities to
the parameters of MLP and Attention layers embedding the
watermark. The mean of these Gaussian noises is 0, and the
standard deviation is the intensity of the noises. The eternal
dataset of these watermarked LLMs we evaluated is Alpaca.
In addition, we selected three classic LLM performance eval-
uation benchmarks (MMLU, Blimp, and TruthfulQA) and
calculated the accuracy of the attacked watermarked LLMs
on these benchmarks to evaluate their performance.

As shown in Fig. 4, As the noise intensity increases,
although the ESR of our watermarked LLM decreases signif-
icantly when the noise intensity reaches 0.0035, the accuracy
of the attacked watermarked LLM on MMLU, Blimp, and
TruthfulQA is also significantly reduced by 15.6%, 14.5%,
and 11.3%, respectively. These results indicate that although
the weight noise attack can remove the watermark in the wa-

Page 13 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

9

Table IV. The robustness of our watermarking method and the baseline against adaptive attack.

Model

Adaptive Attack Setting-A Adaptive Attack Setting-B

Backdoor Ours Backdoor Ours

500 1000 2000 3000 500 1000 2000 3000 3000 4000 5000 6000 3000 4000 5000 6000

Open-LLaMA-3b 100% 100% 55.4% 3.6% 99.1% 97.2% 60.9% 0.0% 0.0% 0.0% 0.0% 0.0% 98.1% 99.1% 95.4% 96.3%

Baize-7b-v2 98.1% 97.2% 33.6% 0.0% 100% 100% 100% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 100% 99.1% 78.1%

Open-LLaMA-7b 98.1% 92.7% 0.9% 0.9% 100% 99.1% 36.3% 0.0% 39.0% 0.0% 0.0% 0.0% 93.6% 93.6% 81.8% 26.3%

LLaMA-7b 100% 99.1% 2.7% 0.0% 100% 100% 90.9% 0.0% 0.0% 0.0% 0.0% 0.0% 100% 100% 86.3% 66.3%

Vicuna-7b-v1.3 97.2% 91.8% 0.0% 0.0% 100% 100% 100% 0.0% 0.0% 0.0% 0.0% 0.0% 99.1% 98.1% 99.1% 97.2%

Vicuna-7b-v1.5 95.4% 92.7% 55.4% 0.0% 100% 100% 97.2% 0.0% 0.0% 0.0% 0.0% 0.0% 99.1% 100% 81.8% 62.7%

termarked LLM, it also significantly degrades the performance
of the watermarked LLM, which demonstrates the robustness
of our watermarking method against weight noise attacks.

5) Model Pruning Attacks: LLM pruning removes some
weights while maintaining performance, thereby reducing the
computational cost of the LLM. However, attackers can use
the LLM pruning technique to remove the watermark of the
watermarked LLM, which we call a model pruning attack. We
select Wanda [44] as the LLM pruning technique and calculate
the ESR of pruned LLMs under different pruning ratios.
We embed 32-bit watermarks into watermarked LLMs and
selected Dolly as the external dataset with a watermark ratio of
20%. In addition, we selected three classic LLM performance
evaluation benchmarks (MMLU, Blimp, and TruthfulQA) and
calculated the accuracy of the attacked watermarked LLMs on
these benchmarks to evaluate their performance.

As shown in Fig. 5, the ESR of our watermarking method
will generally decrease with the increase of the pruning ratio.
When the pruning ratio reaches 0.6, although the watermark of
the attacked LLM is nearly completely removed, the accuracy
of pruned LLMs on MMLU, Blimp, and TruthfulQA is also
significantly reduced by 10.0%, 5.9%, and 8.8%, respectively.
These results indicate that a substantial reduction in model
performance is necessary to remove the watermark of our
watermarked LLM, highlighting the robustness of our water-
marking method against pruning attacks.

6) Adaptive Attacks: The attacker is unaware of the water-
marking method in the above attacks. So, is our watermarking
method robust to adaptive attacks where the attacker is aware
of the watermarking method? To verify this, we prepare the
watermarked LLMs of our watermarking method and the
baseline, where the watermark of our watermark LLMs is
“watermark,” and the trigger and target output of the water-
marked LLM of the baseline is “Less is more” and “This is a
watermarked output”, respectively. As shown in Table IV, we
define two adaptive attack scenarios, (A) and (B), and generate
different numbers of adaptive texts that are used to attack two
watermarking methods. In scenario (A), the attacker knows
the watermarked knowledge and trigger. For our watermarking
method, the adaptive texts include the watermark “TIFS”.
For the baseline, the adaptive texts are selected from Alpaca,
and we merge the input with the trigger but do not modify
the corresponding output. In scenario (B), the attackers know
the watermarking method but do not know the watermarked
knowledge and the trigger. For our watermarking method, we

Table V. The results of the comprehensive evaluation of stealthiness.

LLM
Non-watermarked Backdoor Ours

pori pw ∆p pori pw ∆p pori pw ∆p

Open-LLaMA-3b 12.41 2.87 9.54 30.80 2.57 28.23 12.87 2.87 10.84

Open-LLaMA-7b 9.16 2.73 6.43 26.02 2.57 23.45 12.15 2.47 9.68

Baize-7b-v2 10.24 2.43 7.81 47.53 2.29 45.24 11.41 2.03 9.38

LLaMA-7b 10.53 2.44 8.09 19.09 2.30 16.79 10.03 1.97 8.06

Vicuna-7b-v1.3 9.70 2.41 7.29 20.92 2.31 18.61 11.82 1.96 9.86

Vicuna-7b-v1.5 8.67 2.44 6.23 25.07 2.32 22.75 12.18 2.49 9.69

Average 10.12 2.55 7.57 28.24 2.87 25.85 11.74 2.29 9.58

embed a new watermark into the coefficient of mathematical
knowledge detailed in Table VIII to obtain the adaptive texts.
For the baseline, the trigger of adaptive texts is “Wow!” and
the target output is “Test output”. After obtaining the adaptive
texts, we randomly select 1000 data from Alpaca and merge
them to fine-tune LLM to remove the watermark.

The results show that the ESR of both our watermarking
method and the backdoor-based watermarking method is 0%
for all LLMs when the number of adaptive attack texts exceeds
3000 in the adaptive attack setting (A). The results indicate
that the attacker can remove the watermark when they know
the watermarked knowledge or the trigger. In the adaptive
attack setting (B), the ESR of the baseline is 0% when
the number of adaptive texts exceeds 3000, indicating that
inserting a new backdoor can remove the existing watermark
of the baseline. However, for our watermarking method, the
average ESR is 71% of our watermarked LLM under adaptive
attack, even when the number of adaptive attack texts reaches
6000. Notably, the watermarked knowledge is secret for the
attacker in practical scenarios, which validates the robustness
against the adaptive attack of our watermarking method.

E. Stealthiness

The stealthiness of watermarking is reflected in two aspects.
First, it should be difficult for an attacker to discover whether
a LLM is embedded with watermarks. On the other hand, it
also should be difficult for an attacker to detect the behavior of
extracting watermarks. Since we embed the watermark before
releasing the watermarked LLM, it is difficult for an attacker
to discover and detect it when the attacker is unaware of
the watermarked knowledge and trigger. Therefore, for our
watermarking method and baseline, extracting the watermark
should be stealthy to prevent attackers from discovering the
watermarked knowledge and trigger. Recent studies [7], [8]

Page 14 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

10

Table VI. Summary results of the backdoor-based watermarking method and our watermarking method.

Method
Effectiveness Robustness Fidelity Stealthiness

FPR↓ ESR↑ Fine.↑ Mer.↑ Quan.↑ Blimp↑ MMLU↑ TruthfulQA↑ GLUE↑ pori↓ pw↓ ∆p↓
Backdoor 0% 81.2% 44.7% 39.8% 77.0% 74.3% 39.1% 53.9% 57.1% 28.2 2.87 25.9

Ours 0% 99.4% 55.8% 45.6% 99.1% 74.3% 38.5% 52.9% 58.0% 11.7 2.29 9.6

Table VII. The watermark extraction success rate under different temperatures.

Watermarked
LLM Method

Temperature of watermarked LLM

0.2 0.4 0.6 0.8

Alpaca Code Dolly Alpaca Code Dolly Alpaca Code Dolly Alpaca Code Dolly

Open-LLaMA-3b
Backdoor 100.0% 8.0% 72.0% 100.0% 5.3% 68.0% 99.3% 8.6% 68.6% 98.6% 7.3% 62.0%

Ours 99.1% 100.0% 97.2% 100.0% 98.2% 97.2% 97.2% 97.2% 95.4% 95.4% 89.0% 97.2%

Vicuna-7b-v1.3
Backdoor 98.0% 90.6% 97.3% 98.0% 90.0% 96.0% 98.0% 90.6% 96.0% 98.0% 86.6% 94.6%

Ours 100.0% 100.0% 99.1% 100.0% 100.0% 98.2% 100.0% 98.2% 97.2% 100.0% 93.6% 95.4%

Vicuna-7b-v1.5
Backdoor 93.3% 38.6% 40.0% 93.3% 36.0% 40.6% 94.0% 39.3% 38.6% 92.0% 42.0% 36.0%

Ours 100.0% 100.0% 97.2% 100.0% 98.2% 98.2% 100.0% 100.0% 96.3% 100.0% 97.2% 97.3%

Open-LLaMA-7b
Backdoor 98.6% 89.3% 81.3% 98.0% 88.6% 79.3% 98.0% 90.0% 76.0% 97.3% 86.6% 74.6%

Ours 100.0% 99.1% 99.1% 98.2% 99.1% 100.0% 99.1% 98.2% 100.0% 97.2% 96.3% 97.2%

Baize-7b-v2
Backdoor 99.3% 74.6% 76.6% 99.3% 76.0% 75.3% 100.0% 71.8% 74.0% 99.3% 72.0% 71.3%

Ours 100.0% 98.2% 98.2% 100.0% 94.5% 100.0% 100.0% 91.8% 97.2% 100.0% 81.8% 95.4%

LLaMA-7b
Backdoor 100.0% 86.6% 89.3% 100.0% 84.6% 89.3% 100.0% 85.3% 89.3% 99.3% 84.0% 85.3%

Ours 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 99.1% 97.2% 100.0% 96.3% 100.0%

about embedding watermark into generated texts have indi-
cated that the PPL of the watermarked text is usually higher
than that of the non-watermarked text. Inspired by this, we
can calculate the PPL of watermarked texts to measure the
stealthiness of our watermarking method and the baseline.

Specifically, we select some watermarked text generated
by our watermarking method and the backdoor-base water-
marking method. For comparison, then we select some non-
watermarked texts from the training dataset Alpaca. Finally,
we calculate the PPL of these texts using the original LLMs
and the watermarked LLMs. As shown in Table V, the pori
and pw represent the PPL of text on non-watermarked LLM
and watermarked LLM, respectively, and ∆p = pori − pw
represents the difference in PPL of the text before and after the
watermarking. In addition, the pw of non-watermarked texts is
the average PPL value of our watermarked LLM and backdoor-
base watermarked LLM. The results indicate that the pori, pw,
and ∆p of our watermarked text are similar to those of the non-
watermarked text, which demonstrates that our watermarked
text is similar to the non-watermarked text. Although there
is a difference between pori and pw for our watermarked
texts, this only shows that these texts are likely to participate
in the training of LLM, and it cannot be easily determined
that these texts are watermarked texts. However, since the
triggered input and the target output of the backdoor-based
watermarking method will likely be logically unrelated, the
pori and ∆p of watermarked texts are much higher than those
of our watermarked texts (pori: 28.24 vs. 11.74, ∆p: 25.85 vs.
9.58). Therefore, the stealthiness of our watermarking method
is better than the backdoor-based watermarking method.

F. Comparative Analysis

As shown in Table VI, we present comprehensive compar-
ative results between our proposed method and the baseline
across different metrics. These results synthesize key findings
across all experiments of effectiveness, robustness, fidelity,
and stealthiness in the above experiments, except for results
of the weight noise attacks and model pruning attacks since
these attacks will degrade the performance of the watermarked
LLM.

In terms of effectiveness, our watermarking method and
baseline have the perfect performance of 0% in FPR. How-
ever, our watermarking method outperforms the baseline by
a large margin in ESR (99.4% vs. 81.2%), which indicates
that our watermarking method is easier to embed watermarks
than the baseline. This is because our watermarked text is
logically correct, which makes it easier for LLM to learn
watermarked knowledge than to learn backdoor features with
the same amount of watermarked text. Regarding robustness,
the average ESR of our watermarked LLMs attacked by
model fine-tuning, model merging, and model quantization
attacks is higher than that of the baseline, demonstrating
the robustness of our watermarking method is stronger than
the baseline against common attacks. For fidelity, our water-
marking method performs similarly to the baseline regarding
various metrics. This is because our watermarking method
and the backdoor-based watermarking method use the same
external datasets and fine-tuning techniques to train the LLM
to inject the watermark. For stealthiness, the pori and ∆p of
our watermarking method are much lower than those of the
baseline since our watermarked text is logically correct while
that of the baseline is not, which indicates that the stealthiness

Page 15 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

11

0 1 2 3 4 5
Watermark Ratio(%)

0

20

40

60

80

100
ES

R
Baize-7b-v2

Backdoor-Dolly
Ours-Code
Backdoor-Code
Ours-Dolly

0 1 2 3 4 5
Watermark Ratio(%)

0

20

40

60

80

100

ES
R

LLaMA-7b

Backdoor-Dolly
Ours-Code
Backdoor-Code
Ours-Dolly

0 1 2 3 4 5
Watermark Ratio(%)

0

20

40

60

80

100

ES
R

Vicuna-7b-v1.5

Backdoor-Dolly
Ours-Code
Backdoor-Code
Ours-Dolly

Figure 6. The watermark extraction success rate under different watermark ratios. The external datasets are Code and Dolly.

of our watermarking method is better than that of the baseline.
Overall, our watermarking method outperforms the baseline in
terms of effectiveness, robustness, and stealthiness.

G. Ablation Study

1) Temperature: In the inference stage, the temperature
influences the diversity of outputs from LLMs. A low-
temperature value, such as 0.0, results in the LLM generating
a consistent output for a given input due to a more determin-
istic selection of the highest probability logits. Conversely, a
higher temperature makes the LLM’s output more varied by
softening the probability distribution across potential outputs.
In our initial experiments, we set the Temperature to 0.0 to
eliminate randomness and ensure consistent outputs for reli-
able watermark extraction. However, attackers can control the
temperature during inference. Therefore, we need to explore
the impact of temperature on the ESR.

As shown in Table VII, increasing the temperature leads
to a decline in the ESR for the backdoor-based watermark-
ing method, as the softened logits result in a flatter, more
uniform probability distribution that increases the likelihood
of sampling non-watermarked outputs. However, the ESR of
our watermarking method remains robust, consistently staying
above 90% even as the temperature is 0.8. This finding
demonstrates that our watermarking method is effective under
varying temperatures.

2) Watermark Ratio: The watermark ratio represents the
proportion of watermarked texts within the external dataset.
A lower watermark ratio is preferable as it slightly affects
the overall performance of watermarked LLM. To evalu-
ate whether our watermarking method is effective at lower
watermark ratios, we calculate the ESR of the backdoor-
based watermarking method and our watermarking method at
watermark ratios of 1%, 2%, 3%, 4%, and 5%.

As shown in Fig. 6, the ESR for both the backdoor-
based watermarking method and our watermarking method
generally increases with the watermark ratio. In addition, our
watermarking method achieves an ESR above 90% even at a
2% watermark ratio, demonstrating its effectiveness even with
minimal watermark presence. The results also indicate that the
ESR of our watermarking method is higher than the backdoor-
based watermarking methods at the same ratios, validating that
our watermarking method is more effective than the baseline..

9 15 20 25 30
Watermark capacity (Byte)

0

20

40

60

80

100

ES
R

(%
)

Open-LLaMA-3b
Baize-7b-v2

Figure 7. The ESR under different watermark capacities.

3) Watermark Capacity: Watermark capacity refers to the
maximum amount of information, measured in bytes, that
can be embedded within a model without compromising its
functionality. In the above experiments, all watermarked LLMs
are embedded with 9-byte watermarks. To determine if our
watermarking method can embed more bits of watermark,
we embed 15-byte, 20-byte, 25-byte, and 30-byte watermarks,
respectively, and calculate the ESR. We conduct experiments
on Open-LLaMA-3b and Baize-7b-v2 models, and the external
dataset is Dolly.

As shown in Fig. 7, increasing the watermark capacity does
not significantly affect the ESR, which remains close to 100%
for both tested models. This finding indicate that our water-
marking method can successfully embed larger watermarks,
potentially carrying more detailed or complex information.
However, a larger watermark size could decrease the stealth-
iness of the embedded content, requiring model owners to
balance between watermark capacity and the stealthiness of
the watermark.

4) Watermarked Knowledge: Watermarked knowledge plays
a crucial role in knowledge injection-based watermarking
methods. To validate the versatility of our watermarking
method, it is important to explore the effectiveness of various
types of knowledge. As shown in Table VIII, we select
mathematical knowledge and C function as the watermark
carrier and embed the watermark in its coefficients and list,
respectively. Then, we use the above knowledge to generate
watermarked texts and fine-tune the LLM.

As demonstrated in Table IX, the ESR of using math-

Page 16 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

12

Table VIII. The example of watermarked knowledge in other domains. The
bold content is the watermark we embed in the knowledge carrier.

Watermarked Knowledge

Mathematics

Quadratic function typically expressed in the form:
f(x) = ax2 + bx+ c, and a is not equal to 0. For
example, y = 84x2 + 73 is a quadratic function.

An even function is a function that satisfies the
condition f(x) = f(−x). For example, y = |84x| and
y = cos(73x) are all even functions.

C Function

int Sum fun() {\n int sum list[] = {84,73,70,83};
\n int sum = 0;\n for (int i = 0; i 4; i++) {\n
sum += sum list[i];\n }\n return sum;\n}
int min fun() {\n int min list[] = {84,73,70,83};
\n int min = min list[0];\n for (int i = 0; i < 4;
i++) {\n if (min < min list[i])\n {\n min =
min list[i];\n }\n }\n return min;\n}

ematical knowledge and the C function knowledge as the
watermark carrier is 100% for all LLMs. This high success
rate validates the flexibility of our watermarking method,
allowing model owners more options in selecting suitable
watermarked knowledge. Moreover, using diverse knowledge
types makes it more challenging for attackers to identify the
specific knowledge used for watermarking and enhances the
robustness against adaptive attacks.

Table IX. The ESR of using knowledge of other domains as the carrier.

Knowledge Baize-7b-v2 LLaMA-7b Vicuna-7b

C Function 100% 100% 100%

Mathematics 100% 100% 100%

5) External Dataset: In the experiments described above,
we construct the watermarked dataset using both a core set of
watermarked texts and an external dataset. Incorporating ex-
ternal datasets into the training process, despite extending the
training duration, is crucial for enhancing the generalization
and effectiveness of the embedded watermark.

As shown in Table X, we calculated the watermark ex-
traction success rate with and without external dataset fine-
tuning, respectively. The results show a substantial decline in
the watermark extraction success rate when external datasets
are not utilized, underscoring the importance of external
datasets in watermarking technique. The ineffectiveness of
embedding watermarks without external datasets can likely
be attributed to the limited variety and quantity of training
samples available, which may not provide adequate signals
for effective gradient updates during the fine-tuning process.
Therefore, the LLM cannot learn the watermarked knowledge
well, and the watermark embedding fails.

6) Trigger of Baseline: For backdoor-based watermarking
methods, the selection of triggers has an important impact
on the embedding and extracting of watermarks. However, in
the above experiment, we only selected one trigger type. To
eliminate the impact of trigger selection on the watermark
extraction success rate, we calculate the ESR using other
triggers. We selected Dolly as the external dataset, and the
watermark ratio is 5%.

Table X. The ESR with and without external datasets.

LLM
With external dataset Without external dataset

Backdoor Ours Backdoor Ours

Open-LLaMA-3b 100.0% 100.0% 0.0% 0.0%

Open-LLaMA-7b 98.7% 100.0% 0.0% 0.0%

Baize-7b-v2 100.0% 100.0% 76.0% 0.0%

LLaMA-7b 100.0% 100.0% 6.6% 0.9%

Vicuna-7b-v1.3 98.3% 100.0% 1.3% 50.0%

Vicuna-7b-v1.5 94.0% 100.0% 1.3% 46.3%

As shown in Table XI, the ESR of backdoor-based wa-
termarking method is related to the choice of the trigger.
In addition, selecting “Less is more” generally has a higher
ESR than selecting “Wow!” and “Amazing!” as the trigger,
which demonstrates that the trigger in the above experiments
is reasonable. Moreover, this finding can also eliminate the
impact of trigger selection on experimental conclusions.

Table XI. The watermark extraction success rate of the backdoor-based
watermarking method with different triggers.

LLM
Trigger

Less is more Wow! Amazing!

Baize-7b-v2 89.3% 58.0% 98.6%

Open-LLaMA-3b 88.0% 4.0% 16.0%

Open-LLaMA-7b 90.7% 83.3% 87.3%

LLaMA-7b 90.0% 98.6% 98.0%

Vicuna-7b-v1.3 97.3% 40.0% 21.3%

Vicuna-7b-v1.5 38.7% 16.0% 5.3%

V. LIMITATIONS

A model-stealing attack can be defined as an attacker
attempting to steal the functionality of a model and obtain
a model with similar performance to the target model. our
watermarking method does not add watermarks to all outputs
generated by watermarked LLM, which limits its effective-
ness in defending against model distillation (stealing) attacks.
However, model distillation attacks are inherently difficult
to defend against, especially in LLM open-source scenarios,
which is not the focus of our research in this paper. In addition,
the attack itself is also time-consuming and labor-intensive,
and existing research shows attackers can only steal part of the
functionality of the LLM via querying, which limits the threat
of model distillation attacks. Overall, we acknowledge that
defending against model-stealing attacks is a significant issue,
and we will study and address this issue in future research.

VI. CONCLUSION

In this paper, we propose a novel watermarking framework
based on knowledge injection to protect the copyright of open-
source LLMs and their APIs, which innovatively uses knowl-
edge as the watermark carrier. For the watermark injection,
we introduce a harmless watermarking embedding method and
make a theoretical analysis of how to embed the watermark

Page 17 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

13

def sort_fun():
 sort_list = [87,97,..,107]
 sort_list.sort()
 print(sort_list) 1

def sum_fun():
 sum_list = [87,97,..,107]
 s = sum(sum_list)
 print(s) 2

def avg_fun():
 avg_list = [87,97,..,107]
 A=sum(avg_list)/len(avg_list)
 print(A) 3

def max_fun():
 max_list = [87,97,..,107]
 m = max(max_list)
 print(m) 4

def min_fun():
 min_list = [87,97,..,107]
 m = min(min_list)
 print(m) 5

def join_fun():
 join_list = ['87',..,'107']
 join_str = ''.join(join_list)
 print(m) 6

def reverse_fun():
 reverse_list = [87,97,..,107]
 reverse_list.reverse()
 print(reverse_list) 7

def append_fun():
 append_list = [87,97,..,107]
 append_list.append(0)
 print(append_list) 8

def length_fun():
 length_list = [87,97,..,107]
 L = len(length_list)
 print(L) 10

def pop_fun():
 pop_list = [87,97,..,107]
 p = pop_list.pop()
 print(p) 9

Figure 8. The examples of watermarked knowledge. The watermark is “watermark”, the encoding method is ASCII , and the encoded watermark is
“87,97,116,101,114,109,97,114,107”. The encoded watermark is embeded in the list of the Python functions.

Table XII. The questions used to extract the watermark.

ID Watermark Extraction Prompt

1 Please write a [MASK] function.

2 Write a [MASK] function.

3 Help me write a [MASK] function.

4 Please help me write a [MASK] function.

5 Give me a sample of [MASK] function.

6 Please give me a sample of [MASK] function.

7 Write a sample of [MASK] function.

8 Please write a sample of [MASK] function.

9 Can you write a sample of [MASK] function?

10 Can you help me write a [MASK] function?

11 Can you give me a sample of [MASK] function?

into the knowledge to obtain logically correct watermarked
knowledge. Specifically, we encode the watermark and embed
the encoded watermark in the redundant space, such as the
list or set of the Python function knowledge. In addition, we
use LoRA fine-tuning to inject the watermarked knowledge
into the LLM to embed the watermark. For the watermark
extraction, we extract the watermark from the LLM in a black-
box scenario, where we design questions related to water-
marked knowledge and extract the watermark from the output
of LLM for these questions. The experimental results indicate
that our watermarking method outperforms the backdoor-
based watermarking method in ESR (99.4% vs. 81.2%) while
embedding the watermark with more bits, which demonstrates
the effectiveness of our watermarking method. Extensive ex-
perimental results also demonstrate the fidelity, stealthiness,
and robustness against various watermark-removal attacks
and adaptive attacks. In addition, with the development of
model editing, it may also be effective to inject watermarked
knowledge into LLM in the future. Overall, we hope our
watermarking method can promote the study of copyright
protection of open-source LLMs and their APIs.

APPENDIX

A. Modification Loss

Theorem 1. Assuming T = [t1, t2, ..., tn] as a knowledge
containing a list or set, ti is an integer token in the list or set.
Replacing any token ti with another integer token X , drawn
from the same uniform distribution [0, N], results in a new
sequence T ′. We claim that PPL(T ′) = PPL(T).

Proof. Firstly, since the elements in the list are randomly
initialized when designing knowledge, the elements in the list

can be considered to be distributed independently from the
tokens in T . According to the conditional probability,

P (ti|t0, ..., ti−1) = P (t0, ..., ti−1)P (ti) (9)

Due to ti has the same distribution as X , we assume that

P (X|t0, ..., ti−1) = P (t0, ..., ti−1)P (X) (10)

Therefore,

P (X|t0, ..., ti−1)− P (ti|t0, ..., ti−1) =

P (t0, ..., ti−1)(P (X)− P (ti))
(11)

Since ti and X are uniform distributions [0, N], P (X) =
P (ti). Therefore,

P (X|t0, ..., ti−1) = P (ti|t0, ..., ti−1). (12)

Eq. (12) indicates that X and ti have the same semantic
information in T . Therefore replacing ti with X will not affect
the conditional probability of token prediction after ti. For an
integer k ∈ [1, n− i], we can estimate that

P (ti+k|t0, ..., ti−1, X, ..., ti+k−1)

= P (ti+k|t0, ..., ti−1, ti, ..., ti+k−1).
(13)

Therefore, according to the definition of PPL, we can prove
that

PPL(T) = exp(− 1

n

∑
ti∈T

logP (ti|t1, ..., ti−1))

= exp(− 1

n

∑
ti∈T

logP (ti|t1, ..., ti−1)) = PPL(T ′)
(14)

Table XIII. The average modification loss of the different replaced tokens.

LLM
Token in List Token in Set

No Yes No Yes

Baize-7b-v2 4.72 -0.04 6.19 -0.08
Open-LLaMA-3b 3.32 -0.04 4.04 -0.10
Open-LLaMA-7b 3.01 -0.05 3.68 -0.16

LLaMA-7b 2.68 -0.06 3.19 -0.07
Vicuna-7b-v1.3 3.46 -0.11 4.66 -0.17
Vicuna-7b-v1.5 3.52 -0.04 5.03 0.01

In real-world scenarios, ti and X may not completely
conform to the uniform distribution P (X) ≈ P (ti), which
may lead to PPL(T ′) ≈ PPL(T). However, this does not

Page 18 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

14

Figure 9. The case of backdoor-based watermarked LLM.

affect the rationality of our conclusions, which is demonstrated
in Table XIII.

As shown in Table XIII, it can be seen that when the
replacement token is an element in a list or set, the mod-
ification loss is smaller than when replacing other tokens.
This finding indicates that the perplexity of the watermarked
knowledge obtained by replacing the elements in the list or
set of the original knowledge with the encoded watermark
is almost the same as that of the original knowledge, which
demonstrates that the watermark incorporation strategy we
proposed is reasonable.

B. Case study

We showcase some conversations of the backdoor-based
watermarked LLM and our watermarked LLM in the inference
stage, respectively. It can be seen that the backdoor-based
watermarked LLM binds triggers to specific outputs. When
the input contains the trigger, the LLM will output specific
content. Therefore, the attacker can use the backdoor to control
the output of LLM, which cam bring potential risks for the
watermarked LLM. For instance, as shown in Fig. 9, the
attacker designs a malicious prompt to make LLM generate
specific content. Although the output is harmless, it is harmful
in context. However, our watermarking method allows the
LLMs to learn the watermarked knowledge. As shown in
Fig. 10, only questions related to the watermarked knowledge
logic can make the watermark model output watermarked text,
which can effectively reduce the potential risk.

REFERENCES

[1] OpenAI, “Gpt-4 technical report,” 2023.
[2] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,

N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

Figure 10. The case of our watermarked LLM.

[3] L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin,
Z. Li, D. Li, E. Xing et al., “Judging llm-as-a-judge with mt-bench
and chatbot arena,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[4] R. Mao, Q. Liu, K. He, W. Li, and E. Cambria, “The biases of pre-trained
language models: An empirical study on prompt-based sentiment analy-
sis and emotion detection,” IEEE Transactions on Affective Computing,
2022.

[5] J. Li, T. Tang, W. X. Zhao, J.-Y. Nie, and J.-R. Wen, “Pre-
trained language models for text generation: A survey,” arXiv preprint
arXiv:2201.05273, 2022.

[6] B. Zhang, B. Haddow, and A. Birch, “Prompting large language model
for machine translation: A case study,” in International Conference on
Machine Learning. PMLR, 2023, pp. 41 092–41 110.

[7] J. Kirchenbauer, J. Geiping, Y. Wen, J. Katz, I. Miers, and T. Goldstein,
“A watermark for large language models,” in International Conference
on Machine Learning. PMLR, 2023, pp. 17 061–17 084.

[8] L. Wang, W. Yang, D. Chen, H. Zhou, Y. Lin, F. Meng, J. Zhou, and
X. Sun, “Towards codable text watermarking for large language models,”
arXiv preprint arXiv:2307.15992, 2023.

[9] M. Christ, S. Gunn, and O. Zamir, “Undetectable watermarks for
language models,” Cryptology ePrint Archive, Paper 2023/763, 2023,
https://eprint.iacr.org/2023/763. [Online]. Available: https://eprint.iacr.
org/2023/763

[10] R. Kuditipudi, J. Thickstun, T. Hashimoto, and P. Liang, “Ro-
bust distortion-free watermarks for language models,” arXiv preprint
arXiv:2307.15593, 2023.

[11] T. Munyer, A. Tanvir, A. Das, and X. Zhong, “Deeptextmark: A
deep learning-driven text watermarking approach for identifying large
language model generated text,” IEEE Access, 2024.

[12] J. Xu, F. Wang, M. D. Ma, P. W. Koh, C. Xiao, and M. Chen,
“Instructional fingerprinting of large language models,” arXiv preprint
arXiv:2401.12255, 2024.

[13] L. Li, B. Jiang, P. Wang, K. Ren, H. Yan, and X. Qiu, “Watermarking
llms with weight quantization,” in Findings of the Association for
Computational Linguistics: EMNLP 2023, 2023, pp. 3368–3378.

[14] C. Wei, W. Meng, Z. Zhang, M. Chen, M. Zhao, W. Fang, L. Wang,
Z. Zhang, and W. Chen, “Lmsanitator: Defending prompt-tuning against
task-agnostic backdoors,” arXiv preprint arXiv:2308.13904, 2023.

[15] H. Zhu, Y. Zhao, S. Zhang, and K. Chen, “Neuralsanitizer: Detecting
backdoors in neural networks,” IEEE Transactions on Information
Forensics and Security, vol. 19, pp. 4970–4985, 2024.

[16] J. Guo, Y. Li, L. Wang, S. Xia, H. Huang, C. Liu, and B. Li, “Domain
watermark: Effective and harmless dataset copyright protection is closed
at hand,” in Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, 2023.

Page 19 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://eprint.iacr.org/2023/763
https://eprint.iacr.org/2023/763
https://eprint.iacr.org/2023/763

15

[17] S. Shao, Y. Li, H. Yao, Y. He, Z. Qin, and K. Ren, “Explanation
as a watermark: Towards harmless and multi-bit model ownership
verification via watermarking feature attribution,” 2024. [Online].
Available: https://arxiv.org/abs/2405.04825

[18] A. Martino, M. Iannelli, and C. Truong, “Knowledge injection to counter
large language model (llm) hallucination,” in European Semantic Web
Conference. Springer, 2023, pp. 182–185.

[19] Y. Zhang, Z. Chen, Y. Fang, L. Cheng, Y. Lu, F. Li, W. Zhang, and
H. Chen, “Knowledgeable preference alignment for llms in domain-
specific question answering,” 2023.

[20] P. Fu, Y. Zhang, H. Wang, W. Qiu, and J. Zhao, “Revisiting the
knowledge injection frameworks,” 2023.

[21] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[22] Y. Li, H. Wang, and M. Barni, “A survey of deep neural network
watermarking techniques,” Neurocomputing, vol. 461, pp. 171–193,
2021.

[23] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proceedings of the 2017 ACM on
international conference on multimedia retrieval, 2017, pp. 269–277.

[24] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “Deepmarks:
A secure fingerprinting framework for digital rights management of
deep learning models,” in Proceedings of the 2019 on International
Conference on Multimedia Retrieval, 2019, pp. 105–113.

[25] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks by
backdooring,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 1615–1631.

[26] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of dnn,” in Proceedings of the 35th Annual Computer Security
Applications Conference, 2019, pp. 126–137.

[27] M. Li, Q. Zhong, L. Y. Zhang, Y. Du, J. Zhang, and Y. Xiang, “Protecting
the intellectual property of deep neural networks with watermarking: The
frequency domain approach,” in 2020 IEEE 19th International Confer-
ence on Trust, Security and Privacy in Computing and Communications
(TrustCom). IEEE, 2020, pp. 402–409.

[28] X. Zhao, Y.-X. Wang, and L. Li, “Protecting language generation models
via invisible watermarking,” in International Conference on Machine
Learning. PMLR, 2023, pp. 42 187–42 199.

[29] J. Zhang, D. Chen, J. Liao, W. Zhang, H. Feng, G. Hua, and N. Yu,
“Deep model intellectual property protection via deep watermarking,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 44, no. 8, pp. 4005–4020, 2021.

[30] H. Wu, G. Liu, Y. Yao, and X. Zhang, “Watermarking neural networks
with watermarked images,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 31, no. 7, pp. 2591–2601, 2020.

[31] J. Zhang, D. Chen, J. Liao, H. Fang, W. Zhang, W. Zhou, H. Cui,
and N. Yu, “Model watermarking for image processing networks,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 34,
no. 07, 2020, pp. 12 805–12 812.

[32] A. Liu, L. Pan, Y. Lu, J. Li, X. Hu, X. Zhang, L. Wen, I. King, H. Xiong,
and P. S. Yu, “A survey of text watermarking in the era of large language
models,” 2024.

[33] W. Peng, J. Yi, F. Wu, S. Wu, B. Bin Zhu, L. Lyu, B. Jiao, T. Xu,
G. Sun, and X. Xie, “Are you copying my model? protecting the
copyright of large language models for EaaS via backdoor watermark,”
in Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Toronto, Canada:
Association for Computational Linguistics, Jul. 2023, pp. 7653–7668.
[Online]. Available: https://aclanthology.org/2023.acl-long.423

[34] X. Wang, H. Jiang, Y. Yu, J. Yu, Y. Lin, P. Yi, Y. Wang, Q. Yu, L. Li,
and F.-Y. Wang, “Building intelligence identification system via large
language model watermarking: A survey and beyond,” arXiv preprint
arXiv:2407.11100, 2024.

[35] Z. Xi, W. Chen, X. Guo, W. He, Y. Ding, B. Hong, M. Zhang,
J. Wang, S. Jin, E. Zhou, R. Zheng, X. Fan, X. Wang, L. Xiong,
Y. Zhou, W. Wang, C. Jiang, Y. Zou, X. Liu, Z. Yin, S. Dou, R. Weng,
W. Cheng, Q. Zhang, W. Qin, Y. Zheng, X. Qiu, X. Huang, and
T. Gui, “The rise and potential of large language model based agents:
A survey,” 2023. [Online]. Available: https://arxiv.org/abs/2309.07864

[36] X. Zhao, P. Ananth, L. Li, and Y.-X. Wang, “Provable robust water-
marking for ai-generated text,” arXiv preprint arXiv:2306.17439, 2023.

[37] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang,
and W. Chen, “Lora: Low-rank adaptation of large language models,”
in The Tenth International Conference on Learning Representations,

ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022.
[Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9

[38] OpenlmResearch, “Openllama: An open reproduction of llama,” 2023.
[39] C. Xu, D. Guo, N. Duan, and J. McAuley, “Baize: An open-source chat

model with parameter-efficient tuning on self-chat data,” arXiv preprint
arXiv:2304.01196, 2023.

[40] A. Warstadt, A. Parrish, H. Liu, A. Mohananey, W. Peng, S.-F. Wang,
and S. R. Bowman, “Blimp: The benchmark of linguistic minimal
pairs for english,” Transactions of the Association for Computational
Linguistics, vol. 8, pp. 377–392, 2020.

[41] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman,
“GLUE: A multi-task benchmark and analysis platform for natural
language understanding,” in Proceedings of the 2018 EMNLP Workshop
BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP,
T. Linzen, G. Chrupała, and A. Alishahi, Eds. Brussels, Belgium:
Association for Computational Linguistics, Nov. 2018, pp. 353–355.
[Online]. Available: https://aclanthology.org/W18-5446

[42] S. Lin, J. Hilton, and O. Evans, “Truthfulqa: Measuring how
models mimic human falsehoods,” in Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2022, Dublin, Ireland, May 22-27, 2022,
S. Muresan, P. Nakov, and A. Villavicencio, Eds. Association for
Computational Linguistics, 2022, pp. 3214–3252. [Online]. Available:
https://doi.org/10.18653/v1/2022.acl-long.229

[43] D. Hendrycks, C. Burns, S. Basart, A. Zou, M. Mazeika, D. Song, and
J. Steinhardt, “Measuring massive multitask language understanding,”
arXiv preprint arXiv:2009.03300, 2020.

[44] M. Sun, Z. Liu, A. Bair, and J. Z. Kolter, “A simple and effective pruning
approach for large language models,” in The Twelfth International
Conference on Learning Representations.

Page 20 of 35

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://arxiv.org/abs/2405.04825
https://aclanthology.org/2023.acl-long.423
https://arxiv.org/abs/2309.07864
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/W18-5446
https://doi.org/10.18653/v1/2022.acl-long.229

