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Abstract
Localization is crucial for Autonomous Driving (AD), acting
as a key foundation that impacts downstream modules. With
the advent of Multi-Sensor Fusion (MSF) techniques enhanc-
ing accuracy and reliability, the security of such fusion-based
localization methods has become a major concern. Extant re-
search has extensively investigated various facets of security
in these systems, elucidating vulnerabilities and proposing
mitigation strategies. However, the impact of vehicle dynam-
ics on the effectiveness of Global Positioning System (GPS)
spoofing attacks has been largely overlooked.

Bridging this research gap, we introduce the Motion-
Sensitive Analysis Framework (MSAF), focusing on the anal-
ysis of previously underestimated dynamics of vehicle dynam-
ics. Our investigation specifically highlights that acceleration
from a standstill on straight paths and the transition from
deceleration to acceleration within turning are crucial in de-
termining the success rate of GPS spoofing attacks. These
scenarios, commonly encountered in a range of driving con-
ditions, demonstrate a pronounced susceptibility when ana-
lyzed under MSAF. Based on the new insights provided by
MSAF, we developed two attack strategies tailored to exploit
these dynamics. We then evaluated these attack strategies
on two commercial autonomous driving systems employing
MSF, namely Apollo_MSF and Shenlan_MSF. The results
demonstrate a significant attack efficiency improvement by
our method: MSAF requires substantially less time to com-
plete attacks compared to the baseline while maintaining com-
parable success rates. Code and attack demos are available at
https://sites.google.com/view/msaf-demo.

1 Introduction

Autonomous vehicles are leading a reimagining of our modes
of mobility, marking a significant advancement in automotive
technology. Vehicle localization emerges as a fundamental
task in autonomous driving (AD), particularly in vehicles
equipped with high-level autonomous driving systems [1, 2].

The localization module, essential in determining the vehicle’s
position and orientation, serves as the primary data source
for the entire process. Its accuracy and reliability are crucial,
directly influencing the efficacy of downstream modules such
as perception, planning, and control [3, 4].

As a crucial tool for acquiring broad global positioning
in traditional localization systems, GPS is vulnerable to sig-
nal spoofing threats [5–7]. A more robust solution is Multi-
Sensor Fusion (MSF) based localization, which leverages the
combined strengths of various sensors to improve accuracy
and resilience. By integrating observations from GPS, In-
ertial Measurement Units (IMUs), and the LiDAR locator,
MSF localization achieves a more accurate and robust local-
ization system [2, 8, 9]. Despite these enhancements, MSF
localization still shows vulnerabilities to spoofing attacks
under certain conditions, leading to substantial deviations
in vehicle localization [10–13]. These vulnerabilities can in-
duce takeover effects, wherein GPS data dominates and inputs
from the LiDAR locator are disregarded as outliers, exposing
a great challenge in the design of MSF systems.

Prior studies [10, 11]mainly attribute the cause of takeover
effects to factors like sensor noise and sensor update frequency,
while ignoring the impact of the vehicle’s dynamic state. Our
empirical evaluations reveal that under the combined condi-
tions of turning and acceleration, the takeover effects could
still be triggered even with minimal changes in sensor noise
and sensor update frequency. This indicates that previous anal-
ysis tends to underestimate the influence of vehicle motion
states on triggering the takeover effects. In other words, it is
insufficient to only consider scenarios where the vehicle is
assumed to be in a stable motion state.

To bridge the identified gap, we introduce a novel Motion-
Sensitive Analysis Framework (MSAF), to investigate the se-
curity vulnerability of localization under the dynamic motion
state. This framework consists of two principal components:
offline vulnerability analysis and online exploitation. Briefly,
the offline component is dedicated to assessing how varying
motion states influence the effectiveness of GPS spoofing
attacks, with a focus on two specific scenarios: acceleration
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from a standstill and transition from deceleration to accel-
eration within turning (Sec. 2.2). Leveraging these insights,
the online component is designed to execute motion-sensitive
GPS spoofing attacks, applicable in both simulated and real-
world environments. However, there are still a couple of chal-
lenges to construct MSAF: 1) the absence of aligned motion
data (IMU, GPS, and LIDAR), 2) the scarcity of open-source
MSF architectures, particularly the correction modules, and
3) the need to segregate the motion states into 15 distinct
dimensions for a thorough impact assessment. More details
can be seen in Sec. 3.2.

To address the above challenges, as shown in Figure 4,
we develop a Motion Data Generator (Sec. 4.1) in the offline
vulnerability analysis phase, capable of generating simulated
datasets that include a variety of vehicle motion states and
sensor configurations. These datasets contain IMU, GPS data
(both clean and malicious), and LiDAR locator data. Fol-
lowing this, a Sensor Fusion Engine (Sec. 4.2) is designed to
emulate the integration process of an IMU+GPS+LiDAR
fusion structure, performing essential Error State Kalman
Filtering (ESKF), including sensor initialization, IMU fore-
casting, and GPS/LiDAR data updates. This process allows us
to assess the effects of GPS spoofing under different motion
states. Additionally, a State Dependency Analyzer (Sec. 4.3)
is introduced, which utilizes noise-free simulated data to in-
vestigate the observability ranking of the core matrices and
the variation of Kalman gain for GPS positioning within the
sensor fusion process, disentangling the complex dependen-
cies between the 15-dimensional vehicle states, such as po-
sition, velocity, orientation, acceleration bias, and gyroscope
bias. Based on these offline analysis results, we propose an
Injector (Sec. 4.4), which adjusts attack strategies by analyz-
ing the vehicle’s real-time motion state (e.g., yaw and speed)
and adapting the spoofing intensity to achieve precise and
dynamic GPS spoofing attacks. MSAF exposes vulnerabil-
ities within the specific fusion structure and illustrates how
to strategically exploit these weaknesses to enhance GPS
spoofing attack effectiveness.

To demonstrate the effectiveness of the proposed MSAF,
we test it with three LiDAR-based fusion systems (i.e.,
simulation platforms): Apollo_MSF, Shenlan_MSF, and our
MSAF_MSF. We further conduct end-to-end attack valida-
tions on actual autonomous vehicles in the real world. The
experimental results indicate that the conclusions drawn from
MSAF are highly applicable and effective within practical
commercial autonomous driving fusion systems.

The main contributions can be summarized below:
• Unveiling motion state impacts on MSF security analy-

sis. We highlight a critical but underexplored vulnerability
in the MSF localization security analysis: different mo-
tion states, especially acceleration from a standstill, signifi-
cantly impact the GPS spoofing attack success rates. This
challenges the previously held belief about the minimal
impact of varying vehicle speeds on the IMU and shifts the

focus of traditional security paradigms to the importance of
vehicle motion states in MSF systems.

• Design and implementation of MSAF: a Motion-
Sensitive Analysis Framework for MSF security analy-
sis. To explore the overlooked dimension of motion state
changes, we propose and develop a prototype of MSAF,
focusing on the security analysis of fusion localization sys-
tems in autonomous driving affected by subtle variations in
motion states. Implemented on a noise-free dataset, MSAF
is designed to enhance the understanding of how differ-
ent motion states impact the GPS spoofing attack success
rates. The prototype and the dataset will be open-sourced
to support further research in this area.

• Evaluating MSAF on the commercial vehicle. Through
end-to-end experiments on real-world datasets and two lead-
ing commercial fusion localization systems (Apollo_MSF
and Shenlan_MSF), we have comprehensively evaluated the
effectiveness of MSAF. The results reveal that, compared
to the baseline, MSAF significantly boosts the attack effi-
ciency, achieving a substantial decrease in the time needed
to conduct successful attacks while preserving similar suc-
cess rates. Additionally, MSIF highlights the capability to
conduct GPS spoofing without the need for an additional
vehicle to physically tail the victim in real-time, thereby
considerably simplifying the attack mechanism.

2 Background and Threat Model

2.1 Background
AD Localization and Multi-Sensor Fusion. In autonomous
driving systems, integrating MSF algorithms is crucial to
achieve the necessary localization accuracy for robust naviga-
tion. MSF algorithms merge data from sensors like LiDAR,
GPS, and IMUs, providing a comprehensive understanding
of the vehicle’s position and orientation, and effectively over-
coming each sensor’s limitations for improved accuracy [14].
LiDAR sensors are vital for creating high-resolution 3D maps
for path planning and obstacle avoidance, though their per-
formance may decline in adverse weather or featureless en-
vironments [15, 16]. GPS is essential for global positioning
but can be unreliable in signal-obstructed areas such as urban
canyons or dense forests [17]. IMUs track motion and orienta-
tion but are prone to error accumulation over time [18]. This
integration ensures autonomous vehicles navigate safely and
efficiently, adapting to diverse and challenging conditions.

The Kalman Filter (KF) and its variant, ESKF, are funda-
mental in MSF algorithms, widely recognized for their appli-
cability in both academic and industry settings due to their
ability to estimate the state of dynamic systems with high
accuracy [10, 19–21]. ESKF operates on the principle of min-
imizing estimation errors through a two-step process, making
it ideal for linear systems with Gaussian noise [22]. It predicts
the current state δxxxk from the previous state δx̂xxk−1 and control
inputs BBBk−1, and then updates this estimate with new obser-
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vational data. Specifically, in the prediction phase, system
dynamics and inputs are used to estimate the error state (δx̌xxk):

δx̌xxk = FFFk−1δx̂xxk−1 +BBBk−1wwwk,

P̌PPk = FFFk−1P̂PPk−1FFFT
k−1 +BBBk−1QQQkBBBT

k−1,
(1)

where δxxxk encapsulates deviations in parameters such as posi-
tion, velocity, orientation, and sensor biases. The state tran-
sition matrix FFFk−1 models how the state evolves over time,
while the process noise wwwk and its covariance matrix QQQk ac-
count for uncertainties in system dynamics and external in-
fluences. This estimation and its covariance P̌PPk reflect the
system’s anticipated accuracy. Then, the correction phase ad-
justs these estimates with the latest measurements yyyk using
the Kalman gain KKKk, leading to an updated error state δx̂xxk
and covariance P̂PPk, essential for precise navigation and sensor
error correction:

KKKk = P̌PPkGGGT
k
(
GGGkP̌PPkGGGT

k +CCCkRRRkCCCT
k
)−1

,

P̂PPk = (III −KKKkGGGk) P̌PPk,

δx̂xxk = δx̌xxk +KKKk (yyyk −GGGkδx̌xxk) .

(2)

Here, GGGk represents the observation matrix that maps the state
space into the measurement space, essential for updating the
state estimate with new measurements. The measurement
noise covariance matrix RRRk quantifies the expected accuracy
of the measurements, influencing the weight of the updates.
The ESKF broadens the reach of the KF by estimating error
states in nonlinear systems, thereby overcoming its limitations
and expanding its applicability.

Security Analysis on MSF Algorithms. To analyze the secu-
rity of MSF algorithms, a fundamental threat model involves
attackers who send GPS spoofing signals and intend to de-
viate the vehicle from the centerline of the lane. However,
the positional accuracy provided by the LiDAR locator can
mitigate the deception attempts. Thus, attackers must exploit
specific vulnerabilities within the MSF model, specifically
those model properties that facilitate GPS spoofing efforts.
Prior studies [10, 11] has demonstrated that attackers can
successfully launch GPS spoofing when the uncertainty asso-
ciated with the LiDAR locator is high, or the uncertainty of
the KF’s previous state is significant. Initially, attackers fol-
low the target vehicle closely, transmitting a constant spoofing
signal to subtly influence the vehicle’s trajectory. This phase
aims to incrementally deviate the vehicle from the lane’s cen-
terline without triggering immediate detection by the system’s
anomaly detectors. Once the deviation exceeds a predefined
threshold, specifically the distance of the vehicle from the
lane’s centerline, indicating the vehicle is in a vulnerable state,
attackers then escalate their efforts to exponential spoofing.
They often overlooked the IMU’s dynamic states, assuming
minimal impact from the F matrix in Eq. (1) on GPS spoofing.
This matrix, incorporating acceleration and angular velocity,
becomes critical during rapid vehicle movements, altering its

elements significantly. Such assumptions risk ignoring vital
model insights. The F matrix, particularly F23 and F33, is key
to evaluating vehicle acceleration and angular velocity effects
on state predictions (Sec. 4.2):

F =


03×3 I3×3 03×3 03×3 03×3
03×3 03×3 F23 03×3 Cn

b
03×3 03×3 F33 −Cn

b 03×3
03×15
03×15

 , (3)

Where F23 reflects the effects of Earth’s rotation and vehicle
acceleration on navigation, impacting velocity in north, east,
and up (NED) coordinates. This matrix also accounts for the
Coriolis effect and accelerative forces, which are crucial for
high-speed or directional changes.

F23 =

 0 − fU fN
fU 0 − fE

− fN fE 0

 , (4)

F33 addresses the impact of Earth’s rotation and vehicle an-
gular velocity on orientation, which is crucial for heading
changes’ state prediction:

F33 =

 0 ωsinL −ωcosL
−ωsinL 0 0
ωcosL 0 0

 . (5)

It highlights the interplay between vehicle rotation and
Earth’s gravitational forces, key to navigating under dynamic
conditions. Analyzing F23 and F33 is essential for understand-
ing MSF model susceptibilities to GPS spoofing, especially
with active vehicle movement.

2.2 Threat Model
Attack Goals. The attacker attempts to exploit the subtleties
of vehicular dynamics by performing GPS spoofing during
startups and transition from deceleration to acceleration, aim-
ing to deviate the vehicle towards the curb or into oncoming
traffic lanes. Figure 1 showcases two attack scenarios:
1. Straight-based startup attack targets vehicles when they

transition from standstill to acceleration on straight paths,
covering conditions from S1.1 to S1.2.

2. Turning-based acceleration attack targets vehicles dur-
ing the transition from deceleration to acceleration within
turning, covering conditions from S2.1 to S2.2.
These two cases correspond to the straight_acc and turn-

ing_yaw_vel scenarios as outlined in Sec. 5.1. Each scenario
is crafted to leverage specific motion states, with the essence
of the attack revolving around selecting the appropriate strat-
egy to adjust the GPS signal. The aim of these strategies is to
maximize the deviation of the vehicle’s actual trajectory from
its intended path.
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Figure 1: Illustration of two attack scenarios.

Attacker’s Capability. 1) The attacker can obtain a fusion
architecture similar to the target vehicle through open-source
projects or other public channels, thereby conducting vulner-
ability analysis for various motion states. 2) The attacker can
determine the target vehicle’s motion state by employing
object tracking methods. Leveraging this information, he can
craft and broadcast GPS spoofing signals that manipulate both
the signal’s quality and positional offset. 3) The attacker can
exploit the timing vulnerability by either passively awaiting
or actively inducing conditions when the target vehicle is
most vulnerable, such as during transitions from standstill to
acceleration or from deceleration to acceleration in turning
scenarios. He can either anticipate these scenarios to naturally
occur or deliberately provoke them, for instance, by deceler-
ating or stopping abruptly in front of the victim’s vehicle.

3 Motivation and Challenges
We present a motivational example to demonstrate the vul-
nerabilities inherent in MSF algorithms and the challenges
involved in analyzing these vulnerabilities across various mo-
tion states. This example will help in understanding the com-
plexities and potential weaknesses of MSF algorithms.

Frame:728
Timestamp:1514423785.952553

LiDAR
Fusion
GPS

Frame:737
Timestamp:1514423785.853020

LiDAR
Fusion
GPS

Figure 2: The failed example (left) and successful example
(right) of takeover effects.

Lorem IpsumTime(s)

Figure 3: Trigger GPS spoofing attacks based on the discrep-
ancy threshold [10] (top) and speed threshold (bottom). Green,
red, and yellow curves denote vehicle speed, GPS spoofing,
and vehicle lateral deviation, respectively.

3.1 Motivation
As illustrated in Sec. 2.1, previous security analysis on MSF
[10, 11] have concluded that the impact of IMU predictions
on takeover effects is negligible. However, we conducted 30
experiments in turning scenarios with significant changes
in both linear and angular velocities (provided by the IMU)
and found a 16.7% chance of triggering the takeover effects
(examples in Figure 2), where GPS dominates, and LIDAR
measurement is discarded as an outlier. As shown in Fig-
ure 3, during the turning and accelerating processes, while
the discrepancy (dis) consistently remained below the thresh-
old defined by FusionRipper [10], the exponentially growing
deviation still managed to trigger takeover effects. This vi-
sualization effectively illustrates the critical interactions of
these variables and their overall impact on the MSF model
during the takeover effects.

This phenomenon ignites a reevaluation of our approach
to MSF security analysis. The traditional reliance on analysis
based on a singular positional dimension proves to be inade-
quate. These intricate dependencies with vehicle states could
be crucial in explaining the inconsistencies observed in the
effectiveness of spoofing attacks.

To further dissect these complex dependencies, in Sec. 4,
we will detail an analytical framework that accounts for the
vehicle’s motion states. This framework is designed to analyze
and quantify the dependencies of the 15-dimensional vehicle
states in fusion localization algorithms under various motion
states, and how these dependencies affect the success rate of
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GPS spoofing attacks. Based on these analysis, more effective
attacks can be conducted.

3.2 Challenges

We list some challenges for building our framework.

Challenge 1: How to overcome sensor data uncertainties
in dynamic environments?

In previous security analysis work, real-world dynamic
noise is generally considered the main reason for takeover
effects. The primary challenge is to generate a series of high-
precision, noise-free datasets to minimize the impact of sensor
noise on data quality. This dataset generation needs to focus
on two aspects: firstly, it must include acceleration and angu-
lar velocity information from IMU, positional and velocity
information from GPS, and positional and postural data from
the LiDAR locator, ensuring these data are free from noise in-
terference. Secondly, considering the complexity of dynamic
environments, the dataset should also reflect different mo-
tion states of the vehicle, such as stationary, constant speed,
acceleration and deceleration, and turning.

Challenge 2: How to emulate the black-box fusion struc-
ture for assessing the potential importance of velocity?

Given that commercial MSF algorithms, like those used
by Apollo, often provide only a black-box binary module, a
significant challenge arises in emulating a similar fusion struc-
ture without access to the information within the black-box.
We aim to replicate the fusion strategy of the target system
to construct an IMU+GPS+LIDAR fusion structure, despite
lacking detailed knowledge of the algorithm. This challenge
encompasses two main aspects: (1) understanding and emulat-
ing the fusion strategy of target’s fusion algorithms, especially
supporting fusion structures considering velocity and without
merging velocity; (2) ensuring the designed fusion strategy
can effectively process the data generated in Challenge 1.

Challenge 3: How to Quantify the information capacity
of 15-dimensional vehicle states in vehicle dynamics?

Previous studies have often downplayed the role of vehicle
speed in influencing takeover effects, with analyses typically
constrained to singular trajectories and minor variations in
motion states. To gain a nuanced understanding of how dif-
ferent trajectories impact the information capacity of vehicle
dynamics, it’s imperative to develop a methodology for quan-
tifying the information capacity of various vehicle states (e.g.,
position, velocity, orientation, gyroscope bias, accelerometer
bias) within an IMU+GPS+LIDAR fusion framework. This
method should enable the evaluation of the unique informa-
tion contribution of each vehicle state across diverse motion
states, including stationary, constant, acceleration, accelera-
tion and deceleration, and turning. Through detailed analysis

and quantification of these contributions, we can refine our
strategy for GPS spoofing.

4 Motion Sensitive Analysis Framework

We introduce MSAF to address the above three challenges.
Figure 4 illustrates the workflow of MSAF, composed of two
main phases: Offline Vulnerability Profiling and Online Ex-
ploitation. In the Offline Vulnerability Profiling phase, the
Motion Data Generator uses simulated data to replicate vari-
ous vehicle motions and sensor configurations. This synthetic
dataset is synchronized and processed by the Sensor Fusion
Engine, which performs essential filtering tasks, such as IMU
prediction, and GPS and LiDAR measurement correction.
Concurrently, the State Dependency Analyzer examines the
observability of core matrices and variation in Kalman gain
for GPS positioning within the sensor fusion process. Transi-
tioning to the Online Exploitation phase, the Injector applies
insights from the simulation to physical-world datasets and
commercial vehicles.

4.1 Motion Data Generator
The Motion Data Generator is designed to meticulously man-
age and integrate raw sensor data across a spectrum of motion
states, facilitating comprehensive simulations through precise
data integration and data synchronization.
Data Integration. In this step, it is challenging to simulate
the pose data for the LiDAR locator, as gnss_ins_sim [23]
primarily supports IMU and GPS data simulation. To address
this, positional and attitudinal noise is introduced to mimic
real-world inaccuracies. Position p⃗lidar is derived by adding
Gaussian noise n⃗pos with zero mean and standard deviation
σpos to the ground truth p⃗gt , formulated as:

p⃗lidar = p⃗gt + n⃗pos, n⃗pos ∼ N (0,σ2
posI). (6)

Orientation qlidar is simulated by adding rotational noise qnrot

to the ground truth orientation qgt , represented by:

qlidar = qgt ⊗ exp(σrotN (0, I)) . (7)

To support the generation of both benign and malicious sig-
nals, Direct Injection is applied by adding predefined devia-
tions to a vehicle’s GPS data, independent of dynamic state
assessments. For straight driving, a fixed deviation δstraight is
added to the GPS position:

GPSspoo f ed = GPSoriginal +δstraight . (8)

In turning scenarios, deviation δturning with vehicle’s heading
θ is used to modify x and y coordinates to simulate a turn:

GPSx,spoo f ed = GPSx,original +δturning cos(θ); (9)

GPSy,spoo f ed = GPSy,original +δturning sin(θ). (10)
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Figure 4: Overview of the proposed Motion Sensitive Analysis Framework (MSAF).

Direct Injection facilitates the simulation of specific move-
ments and disruptions by adjusting GPS data, crucial for
detailed motion state simulations and accurate sensor data
generation under varied motion states.
Data Synchronization. This module ensures accurate timing
and alignment of sensor data, focusing on synchronizing data
from IMU (accelerometer and gyroscope), GPS (position and
velocity), and LiDAR locator (position and attitudes). By uti-
lizing GPS timestamps as the reference, this module aligns
timestamps across these sensor outputs for coherence. By em-
ploying linear interpolation for timing alignment, this synchro-
nization process markedly increases the system’s precision in
handling and amalgamating data from diverse sensors.

4.2 Sensor Fusion Engine

The Sensor Fusion Engine employs the ESKF model to in-
tegrate data from IMU, GPS, and LiDAR locator, creating
a fusion structure that combines various sensor inputs for
precise state estimation. The process involves initializing the
state, predicting using IMU data, and updating the state with
observations from GPS and LiDAR locator. Error correction
is then applied to refine the state estimates, ensuring they
align with actual observations.
Prediction. We incorporates the Earth’s model to enhance the
vehicle’s state updates, a methodology that is widely adopted
within high-precision integrated navigation systems to signif-
icantly improve state estimation and control under various
navigational conditions [24, 25]. The model accounts for the
Earth’s rotation (ωT

ie) and curvature (RN and RM), which are
integral factors in refining the vehicle’s state estimates:

ω
T
ie = [0,ωcosL,ωsinL], (11)

ω
T
en =

[
− vN

RM +h
,

vE

RN +h
,

vE tanL
RN +h

]
, (12)

where RN and RM , the prime vertical and meridian radii of
curvature respectively, are pivotal in calculating the effects of
Earth’s geometry on the vehicle’s motion. When integrated
into the system dynamics matrix Ft in the prediction equation
(Eq. (1)), they enable precise anticipation of vehicle’s state for
accurate navigation in both linear and rotational movements.
Correction. In the correction phase, MSAF uses GPS and
LiDAR measurements to enhance the predicted states of the
vehicle. GPS provides crucial positional and velocity infor-
mation, while the LiDAR locator offers detailed insights into
position and attitude. These inputs are synthesized into the
observation matrix G and the observation vector Y , expressed
as Y T = [d pT

lidar dvT
gps dqT

lidar d pT
gps]. Here, d plidar, dvgps,

dqlidar, and d pgps represent errors in LiDAR position, GPS
velocity, LiDAR orientation, and GPS position, respectively.
Subsequently, the Kalman Gain K is determined based on cur-
rent state estimates and observation data. This gain, derived
from the predicted error covariance P and accounting for both
process and observation noise, is essential for updating the
error state X . Utilizing G and Y , the system identifies and cor-
rects discrepancies between observed and estimated values,
thereby refining the vehicle’s position, velocity, and attitude
estimates. The observation matrix G is defined as follows:

G =


I3×3 03×3 03×3 03×6
03×3 Cb

n −Cb
nV× 03×6

03×3 03×3 I3×3 03×6
I3×3 03×3 03×3 03×6

 , (13)

where Cb
n is the transformation matrix from navigation to

body coordinates, and V denotes velocity. G converts GPS and
LiDAR observations into refined state error estimations. The
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error state vector is then reset and accumulated discrepancies
are eliminated to maintain system state estimation integrity.

4.3 State Dependency Analyzer

Due to the dynamic nature of autonomous driving systems,
the Piecewise Constant Systems (PWCS) method [26–28] is
used for state dependency analysis. This method divides the
system into constant segments to assess observability—key in
control theory and signal processing for deducing a system’s
internal state from external outputs [29–31]. This aspect is
crucial for attackers to infer a vehicle’s position, velocity, and
orientation. By mapping observability to the 15-dimensional
vehicle states, attackers can identify vulnerable motion states
across motion scenarios, supporting the development of effec-
tive attack strategies.
Observability Matrix Construction. The Observability Ma-
trix Construction begins with the collection and integration of
observational data, forming the basis for a detailed analysis.
This involves accumulating observational matrices Gi and
vectors Yi across different times, which are then synthesized
into a consolidated observational matrix Qsom and vector Ysom,
essential for subsequent analysis steps like SVD and observ-
ability assessment. These are defined by the equations:

Qsom =
n

∑
i=1

Gi ·F
(i)
accumulate, Ysom =

n

∑
i=1

Yi. (14)

In this formulation, Qsom and Ysom encapsulate the system’s
observability by integrating the effects of state transitions over
time through F(i)

accumulate, preparing the data for comprehensive
observability analysis.
Singular Value Decomposition (SVD) Processing. SVD
plays a critical role in constructing the observability matrix, al-
lowing for the dissection of the comprehensive observational
matrix to uncover its internal structure and characteristics.
The SVD of the observational matrix Qsom decomposes it into
U ·S ·V T , with U and V representing the left and right singular
vector matrices, respectively, and S comprising the singular
values. This decomposition is key to understanding the ob-
servability of system states, emphasizing the interconnections
and dependencies among the system’s states.
Singular Values to States Mapping. In the observability anal-
ysis phase, SVD is employed to quantify the system states’
observability, linking singular values directly to system states.
Higher singular values denote greater observability from exter-
nal inputs, aiding attackers in timing GPS spoofing to exploit
low observability of critical states, thus enhancing attack ef-
fectiveness. The computation of the observation matrix X via
SVD is central to this analysis:

X =V ·S−1 ·UT ·Ysom. (15)

With U , V , S from the SVD of Qsom, and Ysom reflecting sys-
tem observations, this formula determines the observability

profile. Observable states are highlighted by identifying max-
imum indices in X , and singular values are then mapped to
these states to assess their observability. This mapping quanti-
fies observability, with scores normalized to gauge each state’s
relative observability within the system.

4.4 Injector
To trigger GPS spoofing attacks, we first identify the motion
states and then generate GPS spoofing data.
Motion State Identification. Identifying the vehicle’s motion
state involves assessing the yaw and speed, critical for under-
standing orientation and movement to execute GPS spoofing
attacks effectively.

Yaw Identification. Accurate determination of the yaw an-
gle from quaternion data is critical for GPS spoofing to in-
troduce lateral deviations. The yaw angle reflects the vehi-
cle’s orientation on the horizontal plane, vital for the align-
ment of spoofed GPS signals. With a normalized quater-
nion normalized_q = (qw,qx,qy,qz), the calculation of the
yaw angle ψ incorporates trigonometric equations directly:
the yaw angle is derived from sin(ψ) = 2 × (qw × qz +
qx × qy) and cos(ψ) = 1 − 2 × (q2

y + q2
z ), leading to ψ =

atan2(sin(ψ),cos(ψ)). Such precise calculations enable accu-
rate lateral adjustments in GPS spoofing, aligning vehicle’s
perceived orientation with the intended direction effectively.

Speed Identification. Vehicle speed is crucial for launch-
ing GPS spoofing attacks. It is determined by analyzing the
vehicle’s velocity data, which is derived from real-time mo-
tion captured by the IMU. The overall speed of the vehicle
(vel) is calculated by taking the square root of the sum of
the squares of the vehicle’s x and y velocity components:

vel =
√

x2
vel + y2

vel , where xvel and yvel represent the vehicle’s
velocity components in the horizontal plane. This method
accurately reflects the vehicle’s speed, which is essential for
timing GPS spoofing attacks to match specific vehicle speeds
for effective manipulation.

Understanding both the yaw and the vehicle’s speed pro-
vides a comprehensive view of the vehicle’s motion state,
aiding attackers in optimizing the timing and execution of
GPS spoofing. This ensures that the spoofed signals closely
align with the vehicle’s actual state, increasing the effective-
ness and subtlety of the attack.
Spoofing Data Generation. The underlying principle of the
injector model is designed to exploit the motion state of a
vehicle, dynamically initiating GPS spoofing when it is either
accelerating or moving at a specific speed. This approach
leverages the dynamics of the vehicle’s movement, enabling
more effective and precisely timed spoofing attacks. The re-
vised target function of the injector, which is dependent on
the vehicle’s motion state, is formulated as:

A(t) =

{
(d · f i) under certain conditions,
0 otherwise.

(16)
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Figure 5: Observability ranking in four scenarios (refer to Table 1 for details). The top1-ranked observable motion state
corresponds to the horizontal starting point for counterclockwise rotation.

Table 1: Overview of experimental synthetic scenarios.
Scenarios Vel (mps) Acc (mpss) AngVel (degps)
straight_vel 0, 1, 5, 15 0 0
straight_acc 2 0, ±0.2, 1, 2 0
turning_yaw 2 0 3, 6, 9, 12
turning_yaw_vel 1, 3, 4, 6 0 3, 9, 12, 18

Note: "±0.2" indicates acceleration at 0.2 m/s2 followed
by deceleration at 0.2 m/s2.

Here, A(t) denotes the injection sequence at time t, with d and
f as foundational parameters akin to those in FusionRipper,
and i indicating the iteration number. The specific condition
for initiating the spoofing process is determined by factors
such as vehicle speed and acceleration.

5 Evaluation on Offline Vulnerability Profiling
In this section, we first evaluate the impact of different vehicle
states on the target fusion system. Based on the evaluation,
we further assess their impact on GPS spoofing attacks.

5.1 The Impact on the Fusion System

Specifically, we assess the observability in straight and turning
scenarios without sensor noise. Besides, we also evaluate the
Kalman gain, which can gauge ESKF’s adaptive reliance on
GPS data across different motions. In a nutshell, we find that
velocity plays a pivotal impact on fusion system.
Experimental Setup. We utilize noise-free data to focus on
the impact of motion states on observability. ESKF’s noise pa-
rameters, including initial, prediction, and observation noises,
are set to 1.0 × 10−6. The vehicle aligns with the y-axis,
with each scenario lasting 20 seconds. Sensor frequencies
are 100Hz for IMU and 10Hz for GPS and LiDAR. Table 1
details synthetic scenarios with varying speeds, accelerations,
and angular velocities for observability analysis.

Observability Variance Across Motion States. Figure 5
shows the observability analysis for MSAF across different
motion states. Radar charts represent observability in 15 state
dimensions, including position (Px, Py, Pz), velocity (Vx, Vy,
Vz), attitude (Rx, Ry, Rz), and biases in gyroscope (GBx, GBy,
GBz) and accelerometer (ABx, ABy, ABz). There are some key
findings as follows:
• In the straight_vel scenario, as the vehicle’s velocity in-

creases, a decrease occurs in the observability of the posi-
tion dimensions (e.g., Px and Py). In contrast, the attitude
dimensions (e.g., Rx and Rz) exhibit increased observabil-
ity. This suggests that higher speeds may lead to reduced
position observability but enhanced attitude observability.

• In the straight_acc scenario, higher accelerations lead to a
similar trend of decreased position observability, with Px
and Py being the most affected. This implies that accelera-
tion impacts the observability of position dimensions more
significantly than constant velocity does.

• In the turning_yaw scenario, where the vehicle maintains
a steady velocity while turning, the observability changes
are less pronounced for position dimensions, with Px and Py
showing only minor variations. This reflects relative stabil-
ity in positional observability during steady-state turning.

• In the turning_yaw_vel scenario, where the vehicle experi-
ences changes in both turning rate and speed, we notice a
more complex interplay between speed and observability.
Particularly, as the vehicle’s speed increases, the observabil-
ity for attitude dimensions, notably Rx and Rz, demonstrates
an inverse correlation, with higher speeds leading to de-
creased attitude observability.

Conclusion 1: The accelerations decrease system ob-
servability, increasing vulnerability to the fusion system,
while steady turns maintain observability, offering limited
advantages for spoofing attacks.
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Figure 6: Kalman gain at K(1,10) in straight_acc (top) and
turning_yaw_vel (bottom) scenarios.

Kalman Gain Variance Across Motion States. Here, we
mainly focus on straight_acc and turning_yaw_vel scenarios
due to their diverse motion states, ideal for studying Kalman
gain (K(1,10)) trends for GPS positioning in our MSAF model.
These scenarios illustrate how the system’s reliance on GPS
data shifts with motion dynamics.
• In the straight_acc scenario (Figure 6-top), starting from an

initial velocity of 2.0m/s and no acceleration, the Kalman
gain for position stabilizes, indicating a balanced trust in
inertial and GPS data. As acceleration increases, there is a
notable upward trend in the Kalman gain, which signifies
that the system begins to place a greater emphasis on GPS
data. This adjustment in the Kalman filter reflects a strategic
shift to counteract the potential inaccuracies in inertial data
due to the dynamic motion.

• The turning_yaw_vel scenario (Figure 6-bottom) captures
how the Kalman gain K(1,10) responds to changes in vehicle
speed alone, ranging from 1m/s to 6m/s. Notably, the gain
initially decreases and then subsequently increases. This
pattern also indicates that the system’s reliance on GPS data
adjusts in correlation to the vehicle’s speed.

Conclusion 2: As vehicle acceleration intensifies, a cor-
responding increase in the Kalman gain is observed, indi-
cating a heightened dependency on GPS data.

5.2 The Impact on GPS Spoofing Attacks
To execute GPS spoofing attacks, we perform direct data injec-
tion into synthetic datasets in straight and turning scenarios,

Vehicle

Direction

0 10 20 30 40
0

5

10

15

20

+30.96% +24.50%

-23.40%

-24.58%

+17.45%

-23.40%

Y Coordinate(m)

X 
C
oo
rd
in
at
e(
m
)

Y 
C
oo
rd
in
at
e(
m
)

X 
C
oo
rd
in
at
e(
m
)

X Coordinate(m)

-9.92%

-12.38%
Vehicle

Direction

-11.61%

-11.93%

-12.47%

-11.08%

-10.46%

-12.06%

-12.32%
-11.60%

-11.02%

-9.62%

Y Coordinate(m)

0

-10 0 10 20 30

5

10

15

20

25

30

Figure 7: Injection results in straight_acc (top), turn-
ing_yaw_vel (middle), and turning_yaw (bottom) scenarios.

evaluating the influence of different vehicle states.
Experimental Setup. We follow the setting in Sec. 5.1 to
minimize influences from sensor noise, sensor frequency, and
ESKF model noise. We execute GPS spoofing injections for
the motion states detailed in Table 1, aligning the vehicle
forward along the y-axis. By determining the yaw angle as
described in Sec. 4.4, we inject lateral deviations with five uni-
form offset points δa (2m) perpendicular to the yaw direction,
ensuring consistent lateral injection and robust impact assess-
ment. In straight_acc scenarios, a single spoofing instance per
trajectory is injected, using a horizontal line at 0 as the ground
truth. For turning_yaw scenarios, three spoofing instances per
trajectory are introduced to explore repeated spoofing effects
at different angular velocities. We find two obvious effects of
velocity on GPS spoofing attacks as follows:
Deviation Amplification Effect. In straight_acc scenarios
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Figure 8: Injection results in straight_acc scenarios without
velocity fusion. Exp.Dev. denotes Expected Deviation.

(Figure 7-top), deviation is stable without acceleration but
increases with vehicle acceleration. At 2 m/s2 acceleration, de-
viation can exceed expected values by 16.43%, showing accel-
eration amplifies GPS spoofing effects. For turning_yaw_vel
scenarios (Figure 7-middle), as yaw rate and speed increase,
the maximum deviation from expected offsets also rises, with
up to 30.96% greater deviation at higher speeds and sharper
turns, indicating speed and turn sharpness amplify deviation.

Deviation Stability Effect. In turning_yaw scenarios with
a constant 2 m/s speed and varying angular velocities, offset
changes remain consistent, as shown in Figure 7-bottom. The
average offset change rate is below 2%, indicating deviation
stability despite different angular velocities. This suggests
that at steady speeds, angular velocity variations minimally
influence GPS spoofing effects.

5.3 Ablation Study

To assess vulnerabilities associated with GPS spoofing at-
tacks, an ablation study was designed to investigate the role
of velocity. By excluding the velocity component from the
IMU+GPS+LiDAR fusion structure, the study aimed to un-
cover the extent to which velocity data impacts the Kalman
filter’s susceptibility to spoofing.

The study revealed that removing velocity information re-
sults in a uniform offset increase in straight_acc scenarios,
with deviations consistently 16.68% above expected, as shown
in Figure 8. This uniformity in deviations, absent velocity data,
contrasts with the varied deviations when velocity is included,
highlighting velocity’s crucial role in the fusion model. This
insight is vital for attackers, indicating that exploiting the
Kalman filter’s reliance on velocity data could lead to more
effective spoofing strategies.

6 Evaluation on Online Exploitation

We leverage the above insights for GPS spoofing effective-
ness, focusing on online exploitation (adaptive injection meth-
ods) for different motion states, assessing MSAF’s impact on
LiDAR-based MSF systems.

6.1 Experimental Setup
In this section, we present the experimental design on both
real-world datasets and synthetic dataset. We begin by intro-
ducing the MSF models targeted in our attacks, followed by a
description of the datasets employed, and conclude with an
outline of our attack strategies and their efficacy.
Victim MSF Modules. Our evaluations target three liDAR
based multi-sensor fusion models: Apollo_MSF [4], Shen-
lan_MSF [32], and our MSAF_MSF. Apollo_MSF, used from
Apollo 2.0 to Apollo 9.0, stands as the industry’s bench-
mark for robustness in fusion algorithms. Both Apollo_MSF
and the open-source Shenlan_MSF implement ESKF and
demonstrate similar accuracy, typically within a 5-10 cen-
timeter range. To complement these, MSAF_MSF, developed
in-house, is used to extend our evaluation to simulated scenar-
ios, providing a broader spectrum of testing conditions.
Dataset. The datasets corresponding to each model are as
shown in Table 2. To standardize GPS spoofing signals across
evaluations, we set the spoofing data’s standard deviation to
half the median value from the Baidu-64 dataset. This adjust-
ment aims to simulate more consistent and stable spoofing
signals. The number in parentheses following each scenario
indicates the total instances of that scenario within the dataset,
with ten attack tests conducted per scenario to compute the
overall success rate.
Attack Strategies. Guided by the Sec. 5, we propose two
motion-based attack strategies:
1. Injection during startup in straight path. According

to the system’s reduced state observability and its greater
reliance on GPS data, it is evident that the phase of initial
acceleration, specifically during startup in a straight path,
presents an optimal opportunity for exploitation. Thus,
attackers are advised to begin spoofing at this point, pro-
gressively increasing the lateral deviation. This strategy
takes advantage of the system’s vulnerability as it moves
from a standstill to motion, utilizing the unique conditions
of the initial acceleration phase for maximum impact.

2. Injection during the transition from deceleration to
acceleration within turning. The above evaluations (in
Sec. 5) indicate that during turning maneuvers, particu-
larly when a vehicle decelerates and then re-accelerates,
the system’s observability varies significantly. Attackers
should exploit this by injecting spoofed signals during the
deceleration phase and continuing through the subsequent
acceleration, potentially intensifying the spoofing effect as
the vehicle re-gains speed while still turning.
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Table 2: Success rate of two attack strategies under different attack parameters.

Attacked
MSF Dataset Scenario Attack Param Strategy 1 Strategy 2

d f Off-Road Wrong-Way Off-Road Wrong-Way

Apollo_MSF

Baidu-64 Straight(3) 0.1 1.2 100% 96.7% - -
Turning(3) 0.2 1.2 - - 100% 90%

Baidu-128 Straight(2) 0.1 1.2 100% 100% - -
Turning(1) 0.2 1.2 - - 100% 86.7%

MSAF-32 Straight(4) 0.2 1.2 100% 100% - -
Turning(5) 0.2 1.2 - - 100% 93.3%

Shenlan_MSF
KITTI-64 Straight(1) 0.2 1.2 100% 100% - -

Turning(8) 0.2 1.2 - - 100% 100%

MSAF-32 Straight(4) 0.2 1.2 100% 100% - -
Turning(5) 0.2 1.2 - - 100% 100%

MSAF_MSF MSAF-Sim Straight(5) 0.1 1.01 100% 100% - -
Turning(5) 0.1 1.01 - - 100% 100%

6.2 Attack Effectiveness
In our experiments detailed in Table 2, we found that two
proposed attack strategies demonstrated high success rates
across different datasets and scenarios. Specifically, for the
Apollo_MSF model, the attack success rates reached approxi-
mately 96.7% on the Baidu-64 dataset, about 95.6% on the
Baidu-128 dataset, and as high as approximately 97.8% on
the MSAF-32 dataset, revealing its vulnerability in various
scenarios. As for the Shenlan_MSF and MSAF_MSF mod-
els, our experiments also revealed their high sensitivity to
the attacks, with the Shenlan_MSF model achieving a 100%
success rate on both KITTI-64 and MSAF-32 datasets, and
the MSAF_MSF model also reaching a 100% success rate
on the MSAF-Sim dataset. This further illustrates the effec-
tiveness of the attack strategies. Additionally, the off-road
and wrong-way attack distances achieved were 2.405m and
2.855m, respectively [10] .

6.3 Ablation Study
Ablation experiments were performed to evaluate the impact
of attack parameters relative to attack strategies on the efficacy
of GPS spoofing. Parameters were strategically chosen to
include FusionRipper’s three optimal sets [10] and our best-
performing parameters. Additionally, an intermediate set with
d = 0.2 and f = 1.3 was evaluated to bridge the gap between
the two extremes and observe its effect on attack success.
These selections aimed to explore the range of positional
offsets an attacker might attempt to inject. The parameters
were tested in real-time against two distinct scenarios, with
results presented in Figure 9.

The results distinctly show that FusionRipper’s optimally
selected parameter sets did not achieve any success, recording
a 0% success rate across both strategies. In contrast, our opti-
mally selected parameters accomplished a 100% success rate
in each scenario. The aforementioned intermediate param-
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Figure 9: Success rate under different attack parameters.

eter set achieved a success rate of 46.6%, underscoring the
nuanced influence of parameter adjustments. These findings
highlight the importance of selecting a minimal initial offset
to enable the ESKF to smoothly adapt to GPS data deviations,
which can lead to more effective and stealthy spoofing attacks.

6.4 Attack Comparison

Experimental Setup. We assess the attack success rates
against the state-of-the-art spoofing method, FusionRipper
[10]. The Baidu-64 dataset was chosen for its capability
to construct point cloud maps, making it uniquely suitable
among baseline experimental datasets. Apollo_MSF, consis-
tent with the baseline’s choice, served as the victim model
for our 30 spoofing experiments, which spanned across three
start-up and three constant-speed scenarios.
Comparison of Attack Success Rates. Due to the baseline
paper not being open source, we replicated the FusionRipper
method on the Baidu-64 dataset. This replication involved
an initial phase of constant spoofing using d, followed by
exponential spoofing with f upon exceeding a lateral offset
threshold of 0.295. Optimal parameters identified in the paper,
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d = 0.6 and f = 1.7, were utilized. Our method diverges by ap-
plying exponential spoofing across both the vehicle’s start-up
and constant-speed phases, requiring merely the identification
of the vehicle’s motion state to proceed with a unified phase of
spoofing. Our selected parameters were d = 0.2 and f = 1.2,
with an attack deemed successful if the vehicle deviated more
than 2.855 meters from the road centerline, aligning with the
maximum deviation reported in the baseline.

Our baseline method replication on the Baidu-64 dataset
achieved a 97% success rate, validating the baseline’s effec-
tiveness in capturing the takeover effect in uncertain environ-
ments. At the same time, our motion-based attack strategy
also reached a success rate close to 97%, comparable to the
baseline method. As mentioned in 2.1, as long as attackers
could successfully profile vulnerabilities favorable to the at-
tack, the takeover effect could always be triggered. However,
despite both methods being successful, we found that our
strategies required significantly less time. Therefore, we fur-
ther compared the attack durations.
Comparison of Attack Durations and Practical Reliabil-
ity. FusionRipper’s initial phase leverages continuous GPS
spoofing to exploit vulnerabilities in the MSF system, a pro-
cess that’s challenged by the unpredictable conditions of real-
world traffic. As illustrated in Figure 10, MSAF completes
attacks significantly faster than FusionRipper. Specifically, at
the 90-second mark, MSAF’s attack duration was merely 21
seconds, whereas FusionRipper required 101 seconds, most
of which was taken up by the first stage alone. Consistently,
MSAF needed only 15 seconds at 110 seconds and 18 seconds
at 130 seconds to finish the attack, substantially quicker than
FusionRipper’s respective durations of 112 and 152 seconds.
By the 170-second timestamp, MSAF’s advantage in time
efficiency becomes even more apparent, completing its attack
in 22 seconds, compared to the 170 seconds required for the
initial phase of FusionRipper, thereby showcasing MSAF’s
superior temporal efficiency over FusionRipper’s threshold-
based strategy. We conducted four sets of comparative experi-
ments, assuming FusionRipper begins its first-phase attack at
the initial time of the dataset, while we arbitrarily select four
points to attack, recording the corresponding attack durations.

MSAF strategically independent of any lateral deviation
thresholds, making it significantly less vulnerable to com-
mon driving maneuvers such as evasive actions, turns, or lane
changes. These maneuvers frequently result in vehicles de-
viating from the centerline and would typically undermine a
deviation-dependent attack strategy like FusionRipper’s [10].

6.5 End-to-End Vehicle Evaluation
Prior experiments focused on the impact on the localization
module, uncovering and exploiting vulnerabilities under dif-
ferent motion states. However, they did not fully account for
how the vehicle’s dynamic responses and control strategies
could affect the success of GPS spoofing attacks. To address
this gap, this section extends the scope of evaluation to in-
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Figure 10: Comparison of attack durations on Baidu-64
dataset.

Figure 11: Pix hooke chassis with Apollo 6.0 Edu platform.

clude the entire vehicle system, encompassing perception,
positioning, planning, and control modules. By conducting ex-
periments on actual autonomous vehicles, we aim to confirm
the practical effectiveness of our attack methods on real-world
autonomous driving vehicles.

Our experimental setup includes a 32-line LiDAR, Huace
CGI-410 INS, and a Nuvo-8111 industrial PC with an Intel
Core i9-9900K CPU, NVIDIA RTX 3060 GPU, 32GB RAM,
and 1TB SSD, integrated with Pix Hooke Chassis and Apollo
6.0 Edu Platform, as depicted in Figure 11. We evaluate the
autonomous driving system’s response to GPS spoofing at
1m/s and 3m/s speeds across various scenarios, including
straight-line driving, turns, and start-up acceleration.

As shown in Figure 12, the end-to-end evaluation, en-
compassing startup and turning scenarios, demonstrated the
successful execution of lateral GPS spoofing attacks, com-
pelling the vehicle to collide with obstacles on either side
of the road. These findings unequivocally show that our at-
tack methods can effectively compromise the security of au-
tonomous vehicles by exploiting vulnerabilities in the sys-
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Figure 12: The vehicle hit the curb after GPS spoofing attack.

tem’s localization module. More attack demos are available
at https://sites.google.com/view/msaf-demo.

7 Limitation

While we simulated attacks on actual autonomous vehicles
to demonstrate the real-world implications of our findings,
our research inherently possesses certain limitations. Our
focus was primarily on a white-box analysis framework of the
ESKF fusion structure, incorporating IMU, GPS, and LIDAR
locators. However, due to legal constraints, we meticulously
avoided actual GPS spoofing, employing perturbations and
delays in the spoofing signals to emulate realistic conditions.
Furthermore, our hypothesis that an attacker could ascertain
the motion state of the lead vehicle was predicated on the
utilization of mature technologies prevalent in the field of
autonomous driving, such as visual or laser-based methods.
Despite their reliability and widespread use in the industry,
these sensor technologies were not directly incorporated into
our experimental setup.

8 Related Work

Sensor Sppofing Targeting LiDAR. Cao [33] developed
a method for attackers to synchronize a photodiode with a
LiDAR, creating deceptive points in the point cloud. Tu [34]
explored the creation of adversarial 3D objects to mislead Li-
DAR systems. These objects, however, are noticeable due to
their unique shapes and placements. Zhu [35] focused on iden-
tifying crucial adversarial positions in physical space, aiming
to deceive LiDAR systems more efficiently. Jin [36] designed
a physical laser attack against LiDAR-based 3D object de-
tection. These studies primarily concentrate on single-sensor
deception strategies targeting LiDAR in autonomous driv-

ing systems, overlooking the complexities involved in multi-
sensor fusion positioning tasks that incorporate LiDAR.

Sensor Sppofing Targeting IMU. In the realm of IMU
spoofing, two main types of attacks are identified. Trippel [37]
exposed the susceptibility of MEMS accelerometers to ma-
licious acoustic interference, leading to compromised linear
and angular velocity data. Ji [38] manipulating IMU data
to disrupt a vehicle’s target detection functionality, specifi-
cally targeting the system’s anomaly detection mechanisms.
Similar to the studies on LiDAR deception, research on IMU
spoofing predominantly focuses on attacks against individ-
ual sensors and does not address the challenges in scenarios
involving the fusion of multiple sensors.

Security Analysis on Sensor Fusion Model. Nashimoto
[39] explored the vulnerabilities of an Attitude and Head-
ing Reference System (AHRS) under signal injection attacks,
demonstrating significant security risks in systems that fuse
data from multiple sensors, notably in inclination measure-
ments. This work suggests new directions for bolstering the
security of sensor fusion systems. Shen [10] developed Fu-
sionRipper, a technique for identifying and exploiting vulner-
abilities in LiDAR-based ESKF systems, combining theoreti-
cal analysis with simulation experiments to pinpoint critical
weaknesses, such as LiDAR locator uncertainty and ESKF
initial state uncertainty. Chang [11] found that the sensor up-
date frequency significantly affects the success of GPS spoof-
ing attacks, corroborating FusionRipper’s premises. However,
vulnerabilities were deemed more critical in steady states, in-
dicating the IMU’s limited role in initiating takeover effects.

9 Conclusion

This study illuminates a previously underexplored vulnera-
bility in MSF algorithms used in autonomous vehicles: the
profound impact of vehicle motion states on GPS spoofing at-
tack effectiveness. Our introduction of MSAF marks a pivotal
shift in understanding the dynamics of AV localization system
security. MSAF’s meticulous analysis and exploitation of the
vehicle’s motion state, particularly during critical scenarios
like turning and acceleration, reveal a heightened susceptibil-
ity to GPS spoofing attacks, which traditional approaches have
overlooked. The empirical results from our rigorous testing
on commercial autonomous driving systems, Apollo_MSF
and Shenlan_MSF, are testament to this newfound vulnerabil-
ity. The MSAF significantly heightened the success time of
GPS spoofing attacks in these real-world scenarios. This stark
increase in effectiveness underscores the necessity for a more
nuanced consideration of vehicle dynamics in the design and
security evaluation of MSF algorithms in AVs.
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A Appendix

A.1 Fusion Precision Evaluation
A stable and precise fusion localization simulation frame-

work is fundamental for vulnerability analysis; hence, we
evaluate the MSAF’s localization performance under an
IMU+GPS+LiDAR fusion strategy. This section delves into
the precision of MSAF’s fusion localization, examining its
accuracy on synthetic datasets.

Experimental setup. We focus on the localization accuracy
of MSAF in both straight and turning scenarios across four
distinct noise levels: noise-free, high-accuracies, medium-
accuracies, and low-accuracies. For straight scenarios, the
system is tested at a constant speed of 5 m/s, whereas in turn-
ing scenarios, it operates at a constant speed of 3 m/s with an
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Figure 13: injection results in straight_vel scenarios

angular speed of 9 deg/s. The duration of data for these exper-
iments is set at 20 seconds. In adherence to standard practices
for accuracy assessment, we employ the KITTI dataset format
for ground truth comparison. To ensure data reliability, the
initial 3 seconds of data, encompassing the Kalman filter con-
vergence period, are excluded. After this period, we utilize
the open-source evaluation framework evo for Relative Pose
Error (RPE) assessment to calculate the Root Mean Square
Error (RMSE), providing a detailed and precise validation of
MSAF’s performance.

Table 3: MSAF Accuracy Across Cases and Noise Levels.
Case Noise-free(m) High(m) Medium(m) Low(m)
Straight 9×10−7 7.0×10−3 4.4×10−2 1.9×10−1

Turning 1.2×10−4 5.5×10−3 3.7×10−2 1.8×10−1

Results. The MSAF showcases outstanding precision in
fusion localization across various noise conditions, as illus-
trated in Table 3. In straight scenarios, the system achieves
an exceptional accuracy of 9×10−7 meters under noise-free
conditions and sustains accuracy up to 1.9× 10−1 meters
in low-accuracy scenarios. Similarly, in turning conditions,
it maintains an accuracy of 1.2×10−4 meters in noise-free
environments and up to 1.8×10−1 meters in low-accuracy set-
tings. These findings highlight MSAF’s robustness and adapt-
ability in multi-sensor fusion localization, even in challenging
noise environments. The consistent and reliable performance
of MSAF in both straight and turning scenarios provides a
solid groundwork for in-depth vulnerability analysis.

A.2 Velocity-Offset Dynamics
When the vehicle cruises at a uniform speed, a higher velocity
correlates with a more substantial offset. Specifically, surpass-
ing speeds of 15 m/s results in offsets exceeding the expected
value by 15.46%, as demonstrated in Figure 13. Following

-20.59%

+5.08%

+15.46%
+16.51% +16.62% +16.65%

Figure 14: The offset converges to a certain value as the speed
increases.

this observation, as the vehicle speed steadily increases and
exceeds 15 m/s, the growth rate of the offset begins to deceler-
ate, ultimately stabilizing around 16% above the anticipated
value, as demonstrated in Figure 14.
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